
Meta Learning of Interface Conditions for
Multi-Domain Physics-Informed Neural Networks

Shibo Li* 1, Michael Penwarden* 1,2, Yiming Xu 3, Conor Tillinghast 3, Akil Narayan 2,3, Robert M. Kirby 1,2, Shandian Zhe 1
1Kahlert School of Computing, 2Scientific Computing and Imaging (SCI) Institute, and the 3Department of Mathematics
*Equal contribution

Abstract: Physics-informed neural networks (PINNs) are emerging as popular mesh-free solvers for partial differential equations (PDEs). Recent extensions decompose the
domain, applying different PINNs to solve the problem in each subdomain and stitching the subdomains at the interface. Hence, they can further alleviate the problem
complexity, reduce the computational cost, and allow parallelization. However, the performance of multi-domain PINNs is sensitive to the choice of the interface conditions.
While quite a few conditions have been proposed, there is no suggestion about how to select the conditions according to specific problems. To address this gap, we propose
META Learning of Interface Conditions (METALIC), a simple, efficient yet powerful approach to dynamically determine the optimal interface conditions for solving a family of
parametric PDEs. Specifically, we develop two contextual multi-arm bandit (MAB) models. The first one applies to the entire training course, and online updates a Gaussian
process (GP) reward that given the PDE parameters and interface conditions predicts the performance. We prove a sub-linear regret bound for both UCB and Thompson
sampling, which in theory guarantees the effectiveness of our MAB. The second one partitions the training into two stages, one is the stochastic phase and the other
deterministic phase; we update a GP reward for each phase to enable different condition selections at the two stages so as to further bolster the flexibility and performance. We
have shown the advantage of METALIC on four bench-mark PDE families.

Physical-Informed Neural Networks (PINNs):
• Data-driven, Robust, Low-data availability, mesh-free, PDE solvers
• A universal function approximator that can embed physical laws

Multi-Domain Extensions of PINNs:
• Decompose into subdomains
• Divide-and-conquer
• Align the solutions at the interface with conditions
• Simpler subproblems, reduced training costs and parallel computation

Ground-truth
Solution

PINN 1

PINN 2

Viscous Burger’s Equation

Solutions with
Bad choice of
interface
selection

Ablation study conducted on 2D Poisson 𝑢!! + 𝑢"" = 1

Naive combinations of interface conditions could be WORSE!

Ground-truth
Solution

Errors by
Single PINN

Errors by
MD-PINNS with
bad interfaces

Ground-truth
Solution

Errors by
Single PINN

Errors by
MD-PINNS with
bad interfaces

Advection Burgers

Introduction & Motivation
PDE parameters:
sharpness, speed,

viscosity ….

Best choice of
Interfaces: solution

continuity + flux
continuity + …

Our Contribution:
• METALIC: META Learning of Interface Conditions
• A systematic method that select optimal interface conditions for a family of PDEs
• Also considers the training stages characterized by PINNs

Methods
Contextual MAB for Interface Selection (METALIC-Single):

Payoffs varying across different PDEs
Payoffs are correlated according to PDE parameters

• State / context space: PDE parameters
• Action space P: the power set of

• Reward: negative L2 relative error
• Reward function:

where S is the set of interface conditions, and �I > 0 is the weight of the interface term. The training
is to minimize L =

PK
k=1 Lk. The final solution inside each sub-domain k is given by the associated

PINN bu✓k , while on the interface, by the average of the PINNs that share the interface.

3. Meta Learning of Interface Conditions

While multi-domain PINNs have shown successes, the selection of the interface conditions remains
an open and difficult problem. On one hand, naively adding all possible conditions together will
complicate the loss landscape, making the optimization challenging and expensive, yet not necessarily
giving the best performance. On the other hand, different problems can demand a different set of the
interface conditions as the best choice, which is up to the properties of the problem itself. Currently,
there is a lack of methodologies to identify conditions for different problems. To address this issue,
we propose METALIC, a meta learning approach to select problem-specific interface conditions.
Specifically, we consider a parametric PDE family A, where each PDE ⇣ 2 A is parameterized by
� 2 X ⇢ Rd. The parameters can come from the operator F , the source term f and/or the boundary
function g (see (1)). Denote by S = {I1, . . . , Iq} the full set of interface conditions. Our goal is,
given a PDE parameterized by arbitrary � 2 X , to determine I(�) ✓ S — the best set of interface
conditions — for multi-domain PINNs to solve that PDE.

3.1 Multi-Arm Bandit for Entire Training

We first propose a multi-arm bandit (MAB) model (Slivkins et al., 2019) to select the interface
conditions for the entire training procedure of multi-domain PINNs. The MAB is a classical
reinforcement learning problem. Consider a gambler playing q slot machines (i.e., arms). Pulling the
lever of each machine will return a random reward from a machine-specific probabilistic distribution,
which is unknown apriori. The gambler aims to maximize the total reward earned from a series of
lever-pulls across the q machines. For each play, the gambler needs to decide the tradeoff between
exploiting the machine that has observed the largest expected payoff so far and exploring the payoffs
of other machines. To determine PDE-specific interface conditions, we build a contextual MAB
model. We consider the PDE parameters � 2 X as the state (context) of the system, all possible
combinations of the interface conditions (i.e., the power set of S) as the arms, and the negative
solution error as the reward. The problem space can be represented by a triplet (X , P, r(·, ·)),
where X is the state space, P is the action space (the power set of S), and r : X ⇥ P ! R is the
reward function. We represent each action by a q-dimensional binary vector a, where each element
corresponds to a particular interface condition in S. The i-th element ai = 1 means the interface
condition i is selected in the action.

To estimate the unknown reward function r(·, ·), we assign a Gaussian process (GP) prior,

r ⇠ GP
�
0, 

�
[�,a], [�0,a0]

��
(4)

where (·, ·) is a kernel (covariance) function. Considering the categorical nature of the action input,
we design a product kernel,


�
[�,a], [�0,a0]

�
= 1(�, �0)2(a,a0) (5)

4

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

a novel combination of three interface conditions, giving
43.7% error reduction as compared with combining all the
interface conditions together; see Table 5 in Appendix.

Currently, there is a lack of methodologies to identify con-
ditions for different PDEs. To address this issue, we first
formulate it as a novel meta learning problem. Specifically,
we consider a parametric PDE family A, where each PDE
in A is parameterized by � 2 X ⇢ Rd. The parameters
can come from the operator F , the source term f and/or the
boundary function g (see (1)). Denote by S = {I1, . . . , Is}

the full set of interface conditions. Our goal is, given a PDE
parameterized by arbitrary � 2 X , to determine I(�) ✓ S

— the best set of interface conditions — for multi-domain
PINNs to solve that PDE.

We propose to use the multi-arm bandit (MAB) frame-
work (Slivkins et al., 2019) to address this problem. One
might consider other complex and prevalent approaches,
such as deep neural network prediction and reinforcement
learning with policy gradients. However, to get well trained,
these methods usually demand massive PINN running tra-
jectories, which can be extremely costly. In addition, the
success of these methods also rely on elaborate architecture
design and intensive tuning of many hyper-parameters. By
contrast, MAB is simple and efficient, requiring much less
training trajectories and (almost) no architecture design and
hyper-parameter tuning. The online nature make the MAB
straightforward to incrementally update with new data, and
is much more convenient than those heavy-duty models.

3.1 Multi-Arm Bandit for Entire Training

We first propose a MAB model to select the interface con-
ditions for the entire training procedure of multi-domain
PINNs. In general, MAB considers a gambler playing q

slot machines (i.e., arms). Pulling the lever of each ma-
chine will return a random reward from a machine-specific
probabilistic distribution, which is unknown apriori. The
gambler aims to maximize the total reward earned from a se-
ries of lever-pulls across the q machines. For each play, the
gambler needs to decide the tradeoff between exploiting the
machine that has observed the largest expected payoff so far
and exploring the payoffs of other machines. To determine
PDE-specific interface conditions, we build a contextual
MAB model. We consider the PDE parameters � 2 X

as the context, all possible combinations of the interface
conditions (i.e., the power set of S) as the arms, and the
negative solution error as the reward. The problem space
can be represented by a triplet (X , P, r(·, ·)), where X is
the context space, P is the action space (the power set of S),
and r : X ⇥ P ! R is the reward function. We represent
each action by an s-dimensional binary vector a, where each
element corresponds to a particular interface condition in S .
The i-th element ai = 1 means the interface condition i is

selected in the action.

To estimate the unknown reward function r(·, ·), we assign
a Gaussian process (GP) prior,

r ⇠ GP (0,  ([�,a], [�0
,a0])) (3)

where (·, ·) is a kernel (covariance) function. Consider-
ing the categorical nature of the action input, we design a
product kernel,

 ([�,a], [�0
,a0]) = 1(�, �0)2(a,a0) (4)

where 1(�, �0) = exp(�⌧1k� � �0
k
2) is the square expo-

nential (SE) kernel for continuous PDE parameters, and

2(a,a0) = exp

⌧2 ·

1

s

sX

i=1

1(ai = a
0
i)

!
(5)

where 1(·) is the indicator function. Hence, the similarity
between actions is based on the overlap ratio of the selected
interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a context
� from X , and then select an action a, i.e., a set of interface
conditions, according to the current GP reward model. We
then run the multi-domain PINNs with the interface condi-
tions to solve the PDE parameterized by �. We evaluate the
negative solution error ⇠ as the received reward. We add
the new data point ([�,a], �⇠) into the current training set,
and retrain (update) the GP reward model. We repeat this
procedure until a given maximum number of trials (plays) is
done. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srini-
vas et al., 2010) or Thompson sampling (TS) (Thompson,
1933; Chapelle and Li, 2011) to select the action at each
step. Specifically, denote the current predictive distribution
of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB
score is

UCB(a) = µ(a, �) + ct · �(a, �)

where ct > 0 is a coefficient at step t, and the TS score is
sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean
(which reflects the exploitation part) and the variance infor-
mation (exploration part). We evaluate the score for each
action a 2 P (UCB or TS), and select the one with the
highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to
select the action for incoming new PDEs while improving

where S is the set of interface conditions, and �I > 0 is the weight of the interface term. The training
is to minimize L =

PK
k=1 Lk. The final solution inside each sub-domain k is given by the associated

PINN bu✓k , while on the interface, by the average of the PINNs that share the interface.

3. Meta Learning of Interface Conditions

While multi-domain PINNs have shown successes, the selection of the interface conditions remains
an open and difficult problem. On one hand, naively adding all possible conditions together will
complicate the loss landscape, making the optimization challenging and expensive, yet not necessarily
giving the best performance. On the other hand, different problems can demand a different set of the
interface conditions as the best choice, which is up to the properties of the problem itself. Currently,
there is a lack of methodologies to identify conditions for different problems. To address this issue,
we propose METALIC, a meta learning approach to select problem-specific interface conditions.
Specifically, we consider a parametric PDE family A, where each PDE ⇣ 2 A is parameterized by
� 2 X ⇢ Rd. The parameters can come from the operator F , the source term f and/or the boundary
function g (see (1)). Denote by S = {I1, . . . , Iq} the full set of interface conditions. Our goal is,
given a PDE parameterized by arbitrary � 2 X , to determine I(�) ✓ S — the best set of interface
conditions — for multi-domain PINNs to solve that PDE.

3.1 Multi-Arm Bandit for Entire Training

We first propose a multi-arm bandit (MAB) model (Slivkins et al., 2019) to select the interface
conditions for the entire training procedure of multi-domain PINNs. The MAB is a classical
reinforcement learning problem. Consider a gambler playing q slot machines (i.e., arms). Pulling the
lever of each machine will return a random reward from a machine-specific probabilistic distribution,
which is unknown apriori. The gambler aims to maximize the total reward earned from a series of
lever-pulls across the q machines. For each play, the gambler needs to decide the tradeoff between
exploiting the machine that has observed the largest expected payoff so far and exploring the payoffs
of other machines. To determine PDE-specific interface conditions, we build a contextual MAB
model. We consider the PDE parameters � 2 X as the state (context) of the system, all possible
combinations of the interface conditions (i.e., the power set of S) as the arms, and the negative
solution error as the reward. The problem space can be represented by a triplet (X , P, r(·, ·)),
where X is the state space, P is the action space (the power set of S), and r : X ⇥ P ! R is the
reward function. We represent each action by a q-dimensional binary vector a, where each element
corresponds to a particular interface condition in S. The i-th element ai = 1 means the interface
condition i is selected in the action.

To estimate the unknown reward function r(·, ·), we assign a Gaussian process (GP) prior,

r ⇠ GP
�
0, 

�
[�,a], [�0,a0]

��
(4)

where (·, ·) is a kernel (covariance) function. Considering the categorical nature of the action input,
we design a product kernel,


�
[�,a], [�0,a0]

�
= 1(�, �0)2(a,a0) (5)

4

𝑒. 𝑔. 	𝑎 = 	 [0, 1, 1, 0, 1, 0, 1, 0, 0]

Reward modeling: Gaussian Process

where S is the set of interface conditions, and �I > 0 is the weight of the interface term. The training
is to minimize L =

PK
k=1 Lk. The final solution inside each sub-domain k is given by the associated

PINN bu✓k , while on the interface, by the average of the PINNs that share the interface.

3. Meta Learning of Interface Conditions

While multi-domain PINNs have shown successes, the selection of the interface conditions remains
an open and difficult problem. On one hand, naively adding all possible conditions together will
complicate the loss landscape, making the optimization challenging and expensive, yet not necessarily
giving the best performance. On the other hand, different problems can demand a different set of the
interface conditions as the best choice, which is up to the properties of the problem itself. Currently,
there is a lack of methodologies to identify conditions for different problems. To address this issue,
we propose METALIC, a meta learning approach to select problem-specific interface conditions.
Specifically, we consider a parametric PDE family A, where each PDE ⇣ 2 A is parameterized by
� 2 X ⇢ Rd. The parameters can come from the operator F , the source term f and/or the boundary
function g (see (1)). Denote by S = {I1, . . . , Iq} the full set of interface conditions. Our goal is,
given a PDE parameterized by arbitrary � 2 X , to determine I(�) ✓ S — the best set of interface
conditions — for multi-domain PINNs to solve that PDE.

3.1 Multi-Arm Bandit for Entire Training

We first propose a multi-arm bandit (MAB) model (Slivkins et al., 2019) to select the interface
conditions for the entire training procedure of multi-domain PINNs. The MAB is a classical
reinforcement learning problem. Consider a gambler playing q slot machines (i.e., arms). Pulling the
lever of each machine will return a random reward from a machine-specific probabilistic distribution,
which is unknown apriori. The gambler aims to maximize the total reward earned from a series of
lever-pulls across the q machines. For each play, the gambler needs to decide the tradeoff between
exploiting the machine that has observed the largest expected payoff so far and exploring the payoffs
of other machines. To determine PDE-specific interface conditions, we build a contextual MAB
model. We consider the PDE parameters � 2 X as the state (context) of the system, all possible
combinations of the interface conditions (i.e., the power set of S) as the arms, and the negative
solution error as the reward. The problem space can be represented by a triplet (X , P, r(·, ·)),
where X is the state space, P is the action space (the power set of S), and r : X ⇥ P ! R is the
reward function. We represent each action by a q-dimensional binary vector a, where each element
corresponds to a particular interface condition in S. The i-th element ai = 1 means the interface
condition i is selected in the action.

To estimate the unknown reward function r(·, ·), we assign a Gaussian process (GP) prior,

r ⇠ GP
�
0, 

�
[�,a], [�0,a0]

��
(4)

where (·, ·) is a kernel (covariance) function. Considering the categorical nature of the action input,
we design a product kernel,


�
[�,a], [�0,a0]

�
= 1(�, �0)2(a,a0) (5)

4

where S is the set of interface conditions, and �I > 0 is the weight of the interface term. The training
is to minimize L =

PK
k=1 Lk. The final solution inside each sub-domain k is given by the associated

PINN bu✓k , while on the interface, by the average of the PINNs that share the interface.

3. Meta Learning of Interface Conditions

While multi-domain PINNs have shown successes, the selection of the interface conditions remains
an open and difficult problem. On one hand, naively adding all possible conditions together will
complicate the loss landscape, making the optimization challenging and expensive, yet not necessarily
giving the best performance. On the other hand, different problems can demand a different set of the
interface conditions as the best choice, which is up to the properties of the problem itself. Currently,
there is a lack of methodologies to identify conditions for different problems. To address this issue,
we propose METALIC, a meta learning approach to select problem-specific interface conditions.
Specifically, we consider a parametric PDE family A, where each PDE ⇣ 2 A is parameterized by
� 2 X ⇢ Rd. The parameters can come from the operator F , the source term f and/or the boundary
function g (see (1)). Denote by S = {I1, . . . , Iq} the full set of interface conditions. Our goal is,
given a PDE parameterized by arbitrary � 2 X , to determine I(�) ✓ S — the best set of interface
conditions — for multi-domain PINNs to solve that PDE.

3.1 Multi-Arm Bandit for Entire Training

We first propose a multi-arm bandit (MAB) model (Slivkins et al., 2019) to select the interface
conditions for the entire training procedure of multi-domain PINNs. The MAB is a classical
reinforcement learning problem. Consider a gambler playing q slot machines (i.e., arms). Pulling the
lever of each machine will return a random reward from a machine-specific probabilistic distribution,
which is unknown apriori. The gambler aims to maximize the total reward earned from a series of
lever-pulls across the q machines. For each play, the gambler needs to decide the tradeoff between
exploiting the machine that has observed the largest expected payoff so far and exploring the payoffs
of other machines. To determine PDE-specific interface conditions, we build a contextual MAB
model. We consider the PDE parameters � 2 X as the state (context) of the system, all possible
combinations of the interface conditions (i.e., the power set of S) as the arms, and the negative
solution error as the reward. The problem space can be represented by a triplet (X , P, r(·, ·)),
where X is the state space, P is the action space (the power set of S), and r : X ⇥ P ! R is the
reward function. We represent each action by a q-dimensional binary vector a, where each element
corresponds to a particular interface condition in S. The i-th element ai = 1 means the interface
condition i is selected in the action.

To estimate the unknown reward function r(·, ·), we assign a Gaussian process (GP) prior,

r ⇠ GP
�
0, 

�
[�,a], [�0,a0]

��
(4)

where (·, ·) is a kernel (covariance) function. Considering the categorical nature of the action input,
we design a product kernel,


�
[�,a], [�0,a0]

�
= 1(�, �0)2(a,a0) (5)

4where 1(�, �0) = exp(�⌧1k� � �0k2) is the square exponential (SE) kernel for continuous PDE
parameters, and

2(a,a0) = exp

⌧2 · 1

q

qX

i=1

1(ai = a0i)

!
(6)

where 1(·) is the indicator function. Hence, the similarity between actions is based on the overlap
ratio of the selected interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a state � from X , and then select an action a,
i.e., a set of interface conditions, according to the current GP reward surrogate model. We then run the
multi-domain PINNs with the interface conditions to solve the PDE parameterized by �. We evaluate
the negative solution error s as the received reward. We add the new data point ([�,a], �s) into the
current training set, and retrain (update) the GP reward model. We repeat this procedure until a given
maximum number of trials (plays) is finished. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srinivas et al., 2010) or Thompson sampling
(TS) (Thompson, 1933; Chapelle and Li, 2011) to select the action at each step. Specifically, denote
the current predictive distribution of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB score is

UCB(a) = µ(a, �) + c · �(a, �)

where c > 0, and the TS score is sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean (which reflects the exploitation part) and
the variance information (exploration part). We evaluate the score for each action a 2 P (UCB or
TS), and then select the one with the highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to select the action for incoming new
PDEs while improving the reward surrogate model according to the solution error. When the online
playing is done and we no longer conduct exploration to update our model, given a new PDE (say,
indexed by �⇤), we evaluate the predictive mean µ given �⇤ and every a 2 P . We then select the
one with the largest predictive mean (reward). We use the corresponding interface conditions to run
the multi-domain PINNs to solve the PDE. Our MAB learning is summarized in Algorithm 1.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the training of PINNs is often divided into
two stages. The first phase is stochastic training, typically with ADAM optimizer (Kingma and Ba,
2014), to find a nice valley of the loss landscape. The second phase is deterministic optimization,
typically with L-BFGS, to ensure convergence to the (local) minimum. Due to the different nature of
the two phases, the best interface conditions can vary as well. To enable more flexible choices so
as to further improve the performance, we propose a sequential MAB model, as illustrated in Fig.
1. Specifically, for each training phase, we introduce a MAB similar to Sec 3.1, which updates a

5

where 1(�, �0) = exp(�⌧1k� � �0k2) is the square exponential (SE) kernel for continuous PDE
parameters, and

2(a,a0) = exp

⌧2 · 1

q

qX

i=1

1(ai = a0i)

!
(6)

where 1(·) is the indicator function. Hence, the similarity between actions is based on the overlap
ratio of the selected interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a state � from X , and then select an action a,
i.e., a set of interface conditions, according to the current GP reward surrogate model. We then run the
multi-domain PINNs with the interface conditions to solve the PDE parameterized by �. We evaluate
the negative solution error s as the received reward. We add the new data point ([�,a], �s) into the
current training set, and retrain (update) the GP reward model. We repeat this procedure until a given
maximum number of trials (plays) is finished. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srinivas et al., 2010) or Thompson sampling
(TS) (Thompson, 1933; Chapelle and Li, 2011) to select the action at each step. Specifically, denote
the current predictive distribution of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB score is

UCB(a) = µ(a, �) + c · �(a, �)

where c > 0, and the TS score is sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean (which reflects the exploitation part) and
the variance information (exploration part). We evaluate the score for each action a 2 P (UCB or
TS), and then select the one with the highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to select the action for incoming new
PDEs while improving the reward surrogate model according to the solution error. When the online
playing is done and we no longer conduct exploration to update our model, given a new PDE (say,
indexed by �⇤), we evaluate the predictive mean µ given �⇤ and every a 2 P . We then select the
one with the largest predictive mean (reward). We use the corresponding interface conditions to run
the multi-domain PINNs to solve the PDE. Our MAB learning is summarized in Algorithm 1.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the training of PINNs is often divided into
two stages. The first phase is stochastic training, typically with ADAM optimizer (Kingma and Ba,
2014), to find a nice valley of the loss landscape. The second phase is deterministic optimization,
typically with L-BFGS, to ensure convergence to the (local) minimum. Due to the different nature of
the two phases, the best interface conditions can vary as well. To enable more flexible choices so
as to further improve the performance, we propose a sequential MAB model, as illustrated in Fig.
1. Specifically, for each training phase, we introduce a MAB similar to Sec 3.1, which updates a

5

Product kernel
(Continuous) PDE parameters (Binary Encodings) interface selection

where 1(�, �0) = exp(�⌧1k� � �0k2) is the square exponential (SE) kernel for continuous PDE
parameters, and

2(a,a0) = exp

⌧2 · 1

q

qX

i=1

1(ai = a0i)

!
(6)

where 1(·) is the indicator function. Hence, the similarity between actions is based on the overlap
ratio of the selected interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a state � from X , and then select an action a,
i.e., a set of interface conditions, according to the current GP reward surrogate model. We then run the
multi-domain PINNs with the interface conditions to solve the PDE parameterized by �. We evaluate
the negative solution error s as the received reward. We add the new data point ([�,a], �s) into the
current training set, and retrain (update) the GP reward model. We repeat this procedure until a given
maximum number of trials (plays) is finished. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srinivas et al., 2010) or Thompson sampling
(TS) (Thompson, 1933; Chapelle and Li, 2011) to select the action at each step. Specifically, denote
the current predictive distribution of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB score is

UCB(a) = µ(a, �) + c · �(a, �)

where c > 0, and the TS score is sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean (which reflects the exploitation part) and
the variance information (exploration part). We evaluate the score for each action a 2 P (UCB or
TS), and then select the one with the highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to select the action for incoming new
PDEs while improving the reward surrogate model according to the solution error. When the online
playing is done and we no longer conduct exploration to update our model, given a new PDE (say,
indexed by �⇤), we evaluate the predictive mean µ given �⇤ and every a 2 P . We then select the
one with the largest predictive mean (reward). We use the corresponding interface conditions to run
the multi-domain PINNs to solve the PDE. Our MAB learning is summarized in Algorithm 1.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the training of PINNs is often divided into
two stages. The first phase is stochastic training, typically with ADAM optimizer (Kingma and Ba,
2014), to find a nice valley of the loss landscape. The second phase is deterministic optimization,
typically with L-BFGS, to ensure convergence to the (local) minimum. Due to the different nature of
the two phases, the best interface conditions can vary as well. To enable more flexible choices so
as to further improve the performance, we propose a sequential MAB model, as illustrated in Fig.
1. Specifically, for each training phase, we introduce a MAB similar to Sec 3.1, which updates a

5

Predictive distribution of reward

where 1(�, �0) = exp(�⌧1k� � �0k2) is the square exponential (SE) kernel for continuous PDE
parameters, and

2(a,a0) = exp

⌧2 · 1

q

qX

i=1

1(ai = a0i)

!
(6)

where 1(·) is the indicator function. Hence, the similarity between actions is based on the overlap
ratio of the selected interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a state � from X , and then select an action a,
i.e., a set of interface conditions, according to the current GP reward surrogate model. We then run the
multi-domain PINNs with the interface conditions to solve the PDE parameterized by �. We evaluate
the negative solution error s as the received reward. We add the new data point ([�,a], �s) into the
current training set, and retrain (update) the GP reward model. We repeat this procedure until a given
maximum number of trials (plays) is finished. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srinivas et al., 2010) or Thompson sampling
(TS) (Thompson, 1933; Chapelle and Li, 2011) to select the action at each step. Specifically, denote
the current predictive distribution of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB score is

UCB(a) = µ(a, �) + c · �(a, �)

where c > 0, and the TS score is sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean (which reflects the exploitation part) and
the variance information (exploration part). We evaluate the score for each action a 2 P (UCB or
TS), and then select the one with the highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to select the action for incoming new
PDEs while improving the reward surrogate model according to the solution error. When the online
playing is done and we no longer conduct exploration to update our model, given a new PDE (say,
indexed by �⇤), we evaluate the predictive mean µ given �⇤ and every a 2 P . We then select the
one with the largest predictive mean (reward). We use the corresponding interface conditions to run
the multi-domain PINNs to solve the PDE. Our MAB learning is summarized in Algorithm 1.

3.2 Sequential Multi-Arm Bandits

In practice, to achieve good and reliable performance, the training of PINNs is often divided into
two stages. The first phase is stochastic training, typically with ADAM optimizer (Kingma and Ba,
2014), to find a nice valley of the loss landscape. The second phase is deterministic optimization,
typically with L-BFGS, to ensure convergence to the (local) minimum. Due to the different nature of
the two phases, the best interface conditions can vary as well. To enable more flexible choices so
as to further improve the performance, we propose a sequential MAB model, as illustrated in Fig.
1. Specifically, for each training phase, we introduce a MAB similar to Sec 3.1, which updates a

5

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

a novel combination of three interface conditions, giving
43.7% error reduction as compared with combining all the
interface conditions together; see Table 5 in Appendix.

Currently, there is a lack of methodologies to identify con-
ditions for different PDEs. To address this issue, we first
formulate it as a novel meta learning problem. Specifically,
we consider a parametric PDE family A, where each PDE
in A is parameterized by � 2 X ⇢ Rd. The parameters
can come from the operator F , the source term f and/or the
boundary function g (see (1)). Denote by S = {I1, . . . , Is}

the full set of interface conditions. Our goal is, given a PDE
parameterized by arbitrary � 2 X , to determine I(�) ✓ S

— the best set of interface conditions — for multi-domain
PINNs to solve that PDE.

We propose to use the multi-arm bandit (MAB) frame-
work (Slivkins et al., 2019) to address this problem. One
might consider other complex and prevalent approaches,
such as deep neural network prediction and reinforcement
learning with policy gradients. However, to get well trained,
these methods usually demand massive PINN running tra-
jectories, which can be extremely costly. In addition, the
success of these methods also rely on elaborate architecture
design and intensive tuning of many hyper-parameters. By
contrast, MAB is simple and efficient, requiring much less
training trajectories and (almost) no architecture design and
hyper-parameter tuning. The online nature make the MAB
straightforward to incrementally update with new data, and
is much more convenient than those heavy-duty models.

3.1 Multi-Arm Bandit for Entire Training

We first propose a MAB model to select the interface con-
ditions for the entire training procedure of multi-domain
PINNs. In general, MAB considers a gambler playing q

slot machines (i.e., arms). Pulling the lever of each ma-
chine will return a random reward from a machine-specific
probabilistic distribution, which is unknown apriori. The
gambler aims to maximize the total reward earned from a se-
ries of lever-pulls across the q machines. For each play, the
gambler needs to decide the tradeoff between exploiting the
machine that has observed the largest expected payoff so far
and exploring the payoffs of other machines. To determine
PDE-specific interface conditions, we build a contextual
MAB model. We consider the PDE parameters � 2 X

as the context, all possible combinations of the interface
conditions (i.e., the power set of S) as the arms, and the
negative solution error as the reward. The problem space
can be represented by a triplet (X , P, r(·, ·)), where X is
the context space, P is the action space (the power set of S),
and r : X ⇥ P ! R is the reward function. We represent
each action by an s-dimensional binary vector a, where each
element corresponds to a particular interface condition in S .
The i-th element ai = 1 means the interface condition i is

selected in the action.

To estimate the unknown reward function r(·, ·), we assign
a Gaussian process (GP) prior,

r ⇠ GP (0,  ([�,a], [�0
,a0])) (3)

where (·, ·) is a kernel (covariance) function. Consider-
ing the categorical nature of the action input, we design a
product kernel,

 ([�,a], [�0
,a0]) = 1(�, �0)2(a,a0) (4)

where 1(�, �0) = exp(�⌧1k� � �0
k
2) is the square expo-

nential (SE) kernel for continuous PDE parameters, and

2(a,a0) = exp

⌧2 ·

1

s

sX

i=1

1(ai = a
0
i)

!
(5)

where 1(·) is the indicator function. Hence, the similarity
between actions is based on the overlap ratio of the selected
interface conditions, which is natural and intuitive.

To learn the MAB, each step we randomly sample a context
� from X , and then select an action a, i.e., a set of interface
conditions, according to the current GP reward model. We
then run the multi-domain PINNs with the interface condi-
tions to solve the PDE parameterized by �. We evaluate the
negative solution error ⇠ as the received reward. We add
the new data point ([�,a], �⇠) into the current training set,
and retrain (update) the GP reward model. We repeat this
procedure until a given maximum number of trials (plays) is
done. To fulfill a good exploration-exploitation tradeoff, we
use the Upper Confidence Bound (UCB) (Auer, 2002; Srini-
vas et al., 2010) or Thompson sampling (TS) (Thompson,
1933; Chapelle and Li, 2011) to select the action at each
step. Specifically, denote the current predictive distribution
of the GP surrogate by

p(br|D, �,a) = N
�
br|µ(a, �), �2(a, �)

�

where D is the accumulated training set so far. The UCB
score is

UCB(a) = µ(a, �) + ct · �(a, �)

where ct > 0 is a coefficient at step t, and the TS score is
sampled from the predictive distribution,

TS(a) ⇠ p(br|D, �,a).

We can see that both scores integrate the predictive mean
(which reflects the exploitation part) and the variance infor-
mation (exploration part). We evaluate the score for each
action a 2 P (UCB or TS), and select the one with the
highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to
select the action for incoming new PDEs while improving

Two-Stages Interface Selection (METALIC-Sequential):
Best practice for training PINNs: Robust & Accurate

NN initialization ADAM L-BGFS PDE solution

GP Reward
Model

GP Reward
Model

MAB-1 MAB-2

<latexit sha1_base64="wvsOQ7fOmsWCGZc2RMwRRbb/y4Q=">AAACC3icbVC7TsMwFHV4lvIKMLJYrSohhipBFTBWsDAWiT6kNkSO47RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSpaPzrnXPvcECaNKO863tbK6tr6xWdoqb+/s7u3bB4cdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8nevdByIVFfxOTxLixWjIaUQx0oby7UptEAgWqklsrmwQEI2m5UGM9CiIMnR/6rtT3646dWdWcBm4BaiColq+/TUIBU5jwjVmSKm+6yTay5DUFDNink8VSRAeoyHpG8hRTJSXzXaZwpphQhgJaQ7XcMb+nshQrHK3pjN3qRa1nPxP66c6uvQyypNUE47nH0Upg1rAPBgYUkmwZhMDEJbUeIV4hCTC2sRXNiG4iysvg85Z3T2vN24b1eZVEUcJHIMKOAEuuABNcANaoA0weATP4BW8WU/Wi/VufcxbV6xi5gj8KevzB+pNmvk=</latexit>

a⇤
1

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

Stochastic training

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

<latexit sha1_base64="fF2CnGmhEm/eDlmTPIzxzI/z3Ho=">AAACGnicbVDLSsNAFJ34rPEVdelmsBSqSElKUZdFNy4r2Ac0MUwmk3bo5MHMRCih3+HGX3HjQhF34sa/cdIG1NYLwxzOuZd77vESRoU0zS9taXlldW29tKFvbm3v7Bp7+x0RpxyTNo5ZzHseEoTRiLQllYz0Ek5Q6DHS9UZXud69J1zQOLqV44Q4IRpENKAYSUW5hlWp2l7MfDEO1ZfZHpFocgrtEMmhF2Rocqz/4LsTt667RtmsmdOCi8AqQBkU1XKND9uPcRqSSGKGhOhbZiKdDHFJMSMT3U4FSRAeoQHpKxihkAgnm542gRXF+DCIuXqRhFP290SGQpF7V525TTGv5eR/Wj+VwYWT0ShJJYnwbFGQMihjmOcEfcoJlmysAMKcKq8QDxFHWKo08xCs+ZMXQades85qjZtGuXlZxFECh+AIVIEFzkETXIMWaAMMHsATeAGv2qP2rL1p77PWJa2YOQB/Svv8BkDRoF4=</latexit>

a⇤
2

Deterministic trainingMulti-Domain
PINNs:

<latexit sha1_base64="5qMuPrT0TOWH0oTNDSgxZcwqz8A=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQyCp7Aroh6DXjxGMA9IljA76U2GzD6Y6VXDmk/x4kERr36JN//GSbIHTSxoKKq66e7yEyk0Os63VVhZXVvfKG6WtrZ3dvfs8n5Tx6ni0OCxjFXbZxqkiKCBAiW0EwUs9CW0/NH11G/dg9Iiju5wnIAXskEkAsEZGqlnl7sIj5jJWGs6oV2QsmdXnKozA10mbk4qJEe9Z391+zFPQ4iQS6Z1x3US9DKmUHAJk1I31ZAwPmID6BgasRC0l81On9Bjo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XifF4NLLRJSkCBGfLwpSSTGm0xxoXyjgKMeGMK6EuZXyIVOMo0mrZEJwF19eJs3TqntePbs9q9Su8jiK5JAckRPikgtSIzekThqEkwfyTF7Jm/VkvVjv1se8tWDlMwfkD6zPH1ozlBE=</latexit>

loss `

Figure 1: The illustration of the sequential MAB model.

separate GP reward model. To coordinate the two MABs to optimize the final accuracy, the reward
of the first MAB, denoted by r1, includes not only the negative solution error after the stochastic
training phase, but also a discounted error after the second phase,

r1 = �s1 + � · (�s2) (7)

where � is the discount factor, and s1 and s2 are the solution errors after the stochastic and determin-
istic training phases, respectively. In this way, the influence of the interface conditions at the first
training phase on the final solution accuracy is also integrated into the learning of the GP reward
model. Next, we expand the context of the second MAB with the training loss after the first phase.
The system state includes both the PDE parameters � and the loss value `, which together with the
action a constitute the input to the GP reward model of the second MAB. In this way, the training
status of the first phase is also used to determine the interface conditions for the second phase.

To learn our sequential MAB model, each step we randomly sample the PDE parameters � 2 X .
Then based on the GP reward model of the first MAB, we use UCB (or TS) to select an action (i.e., the
first set of interface conditions), with which we conduct the stochastic training of the multi-domain
PINNs. We then feed the training loss `, PDE parameters � and every possible action into the GP
reward model of the second MAB. We select the second set of interface conditions, with which to
continue the training of the multi-domain PINNs using deterministic optimization. We evaluate the
solution error after each phase, and obtain the reward and new examples for the two GP reward
models. We update these models accordingly. The learning of the sequential MABs is summarized
in Algorithm 2.

4. Related Work

As an alternative to mesh-based numerical methods, PINNs have achieved many success stories,
e.g., (Raissi et al., 2020; Chen et al., 2020; Sirignano and Spiliopoulos, 2018; Zhu et al., 2019; Geneva
and Zabaras, 2020; Sahli Costabal et al., 2020). Multi-domain PINNs, e.g., XPINNs (Jagtap and
Karniadakis, 2021) and cPINNs (Jagtap et al., 2020), extend PINNs based on domain decomposition
and use a set of PINNs to solve the PDE in different subdomains. To align the solutions across the
subdomains, XPINNs used solution continuity and residual continuity as the interface conditions.
Other conditions are also available, such as the flux conservation in cPINNs (Jagtap et al., 2020), the
gradient continuity (De Ryck et al., 2022), and the residual gradient continuity in gPINNs (Yu et al.,

6

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

action a 2 P (UCB or TS), and select the one with the
highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to
select the action for incoming new PDEs while improving
the reward model according to the solution error. When the
online playing is done and we no longer conduct exploration
to update our model, given a new PDE (say, indexed by �⇤),
we evaluate the predictive mean µ given �⇤ and every a 2

P . We then select the one with the largest predictive mean
(reward). We use the corresponding interface conditions to
run the multi-domain PINNs to solve the PDE. Our MAB
learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-
terface conditions for different PDEs, we perform regret
analysis. Consider a sequence of PDE parameters (i.e., con-
text) in the online playing, {�t}. Denote by a⇤

t and at

the optimal and MAB-selected interface condition set for
each �t, respectively. We define an instantaneous regret
⇣t = ⇠(�t,at) � ⇠(�t,a⇤

t). Then we can analyze the accu-
mulated regret up to step T over the context sequence {�t},
namely, RT =

PT
t=1 ⇣t. Our MAB guarantees a sublinear

regret bound for both UCB and TS.
Theorem 3.1. For � > 0, take ct in the UCB as

ct = 2 log

✓
2s⇡2

t
2

6�

◆
t 2 N

where d is the number of PDE parameters, and s is the

total number of interface conditions. Conditioning on every

context sequence {�t}, let {at} be the action selected by

the UCB score under the above choice of {ct}. Then, with

probability at least 1 � �, the regret RT satisfies

RT .
s

2sT (log T)d+1 log
�

2sT 2

�

�

log(1 + �
�2
0)

T = 1, 2, · · · , (7)

where the implicit constant is absolute (does not depend on

{ct} but depends on the domain X). In particular,

E[RT] .
s

2sT (log T)d+1 log (2sT 2)

log(1 + �
�2
0)

, (8)

Moreover, (8) holds also for Thompson sampling.

We can see lim
T!1

E[RT]
T = 0, i.e., the average instantaneous

regret converges to zero. Since RT � 0, it means that our
MAB is able to find the optimal interface conditions (almost
surely) for every possible sequence of PDE parameters with
enough long run.

3.2 Sequential Multi-Arm Bandits
In practice, to achieve good and reliable performance, the
training of PINNs is often divided into two stages (Lu et al.,

GP Reward
Model

GP Reward
Model

MAB-1 MAB-2

<latexit sha1_base64="wvsOQ7fOmsWCGZc2RMwRRbb/y4Q=">AAACC3icbVC7TsMwFHV4lvIKMLJYrSohhipBFTBWsDAWiT6kNkSO47RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSpaPzrnXPvcECaNKO863tbK6tr6xWdoqb+/s7u3bB4cdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8nevdByIVFfxOTxLixWjIaUQx0oby7UptEAgWqklsrmwQEI2m5UGM9CiIMnR/6rtT3646dWdWcBm4BaiColq+/TUIBU5jwjVmSKm+6yTay5DUFDNink8VSRAeoyHpG8hRTJSXzXaZwpphQhgJaQ7XcMb+nshQrHK3pjN3qRa1nPxP66c6uvQyypNUE47nH0Upg1rAPBgYUkmwZhMDEJbUeIV4hCTC2sRXNiG4iysvg85Z3T2vN24b1eZVEUcJHIMKOAEuuABNcANaoA0weATP4BW8WU/Wi/VufcxbV6xi5gj8KevzB+pNmvk=</latexit>

a⇤
1

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

Stochastic training

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

<latexit sha1_base64="fF2CnGmhEm/eDlmTPIzxzI/z3Ho=">AAACGnicbVDLSsNAFJ34rPEVdelmsBSqSElKUZdFNy4r2Ac0MUwmk3bo5MHMRCih3+HGX3HjQhF34sa/cdIG1NYLwxzOuZd77vESRoU0zS9taXlldW29tKFvbm3v7Bp7+x0RpxyTNo5ZzHseEoTRiLQllYz0Ek5Q6DHS9UZXud69J1zQOLqV44Q4IRpENKAYSUW5hlWp2l7MfDEO1ZfZHpFocgrtEMmhF2Rocqz/4LsTt667RtmsmdOCi8AqQBkU1XKND9uPcRqSSGKGhOhbZiKdDHFJMSMT3U4FSRAeoQHpKxihkAgnm542gRXF+DCIuXqRhFP290SGQpF7V525TTGv5eR/Wj+VwYWT0ShJJYnwbFGQMihjmOcEfcoJlmysAMKcKq8QDxFHWKo08xCs+ZMXQades85qjZtGuXlZxFECh+AIVIEFzkETXIMWaAMMHsATeAGv2qP2rL1p77PWJa2YOQB/Svv8BkDRoF4=</latexit>

a⇤
2

Deterministic trainingMulti-Domain
PINNs:

<latexit sha1_base64="5qMuPrT0TOWH0oTNDSgxZcwqz8A=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQyCp7Aroh6DXjxGMA9IljA76U2GzD6Y6VXDmk/x4kERr36JN//GSbIHTSxoKKq66e7yEyk0Os63VVhZXVvfKG6WtrZ3dvfs8n5Tx6ni0OCxjFXbZxqkiKCBAiW0EwUs9CW0/NH11G/dg9Iiju5wnIAXskEkAsEZGqlnl7sIj5jJWGs6oV2QsmdXnKozA10mbk4qJEe9Z391+zFPQ4iQS6Z1x3US9DKmUHAJk1I31ZAwPmID6BgasRC0l81On9Bjo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XifF4NLLRJSkCBGfLwpSSTGm0xxoXyjgKMeGMK6EuZXyIVOMo0mrZEJwF19eJs3TqntePbs9q9Su8jiK5JAckRPikgtSIzekThqEkwfyTF7Jm/VkvVjv1se8tWDlMwfkD6zPH1ozlBE=</latexit>

loss `

Figure 1: The illustration of the sequential MAB model.

2021). The first phase is stochastic training, typically with
ADAM optimizer (Kingma and Ba, 2014), to find a nice val-
ley of the loss landscape. The second phase is deterministic
optimization, typically with L-BFGS, to ensure convergence
to the (local) minimum. Due to the different nature of the
two phases, the ideal interface conditions can vary as well.
To enable more flexible choices so as to further improve
the performance, we propose a sequential MAB model, as
illustrated in Fig. 1. Specifically, for each training phase,
we introduce a MAB similar to Sec 3.1, which updates a
separate GP reward model. To coordinate the two MABs
to optimize the final accuracy, the reward of the first MAB,
denoted by r1, includes not only the negative solution error
after the stochastic training phase, but also a discounted
error after the second phase,

r1 = �⇠1 + � · (�⇠2) (9)

where � is the discount factor, and ⇠1 and ⇠2 are the solution
errors after the stochastic and deterministic training phases,
respectively. In this way, the influence of the interface
conditions at the first training phase on the final solution
accuracy is also integrated into the learning of the GP reward
model. Next, we expand the context of the second MAB
with the training loss value ` after the first phase. In this way,
the training status of the first phase is also used to determine
the interface conditions for the second phase. The learning
of the sequential MABs is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB
algorithms is O(TR+

PT
t=1 t

3) where T is the total number
of iterations, R is the complexity of multi-domain PINNs,
and O(

PT
t=1 t

3) is the total time complexity of updating
the GP reward model to T . In practice, T is typically chosen
as a few hundreds (see the experimental section). Under
such a choice, running multi-domain PINNs is much more
costly than GP training, and the complexity is dominant by
O(TR). Hence, the time complexity is linear in the number
of iterations. The space complexity of our algorithm is
O(C + T

2), which is store the GP reward model and the
multi-domain PINN (with constant complexity O(C)).

4 Related Work

As an alternative to mesh-based numerical methods, PINNs
have achieved many success stories, e.g., (Raissi et al., 2020;

<latexit sha1_base64="wQSID0bMnT8yH32TxzKEXisZPL0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgxpKU+tgIRTcuK9gHNCFMppN26GQSZiZiCf0NNy4UcevPuPNvnLZZaOuBC4dz7uXee4KEM6Vt+9sqrKyurW8UN0tb2zu7e+X9g7aKU0loi8Q8lt0AK8qZoC3NNKfdRFIcBZx2gtHt1O88UqlYLB70OKFehAeChYxgbSRX+jV0jc7cJ+bX/HLFrtozoGXi5KQCOZp++cvtxySNqNCEY6V6jp1oL8NSM8LppOSmiiaYjPCA9gwVOKLKy2Y3T9CJUfoojKUpodFM/T2R4UipcRSYzgjroVr0puJ/Xi/V4ZWXMZGkmgoyXxSmHOkYTQNAfSYp0XxsCCaSmVsRGWKJiTYxlUwIzuLLy6RdqzoX1fP7eqVxk8dRhCM4hlNw4BIacAdNaAGBBJ7hFd6s1Hqx3q2PeWvBymcO4Q+szx8jW5B3</latexit>

r2 = �⇠2(Discounted) Two-stages reward

• Adam: Find a nice valley of loss
landscape

• L-BFGS: Ensure convergence to
good (local) minimum

In practice to train PINNs

Theoretical guarantees (METALIC-Single):
• Consider a sequence of PDEs:
• Instantaneous regret:
• Accumulated regret:

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

the reward model according to the solution error. When the
online playing is done and we no longer conduct exploration
to update our model, given a new PDE (say, indexed by �⇤),
we evaluate the predictive mean µ given �⇤ and every a 2

P . We then select the one with the largest predictive mean
(reward). We use the corresponding interface conditions to
run the multi-domain PINNs to solve the PDE. Our MAB
learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-
terface conditions for different PDEs, we perform regret
analysis. Consider a sequence of PDE parameters (i.e., con-
text) in the online playing, {�t}. Denote by a⇤

t and at

the optimal and MAB-selected interface condition set for
each �t, respectively. We define an instantaneous regret
rt = ⇠(�t,at) � ⇠(�t,a⇤

t). Then we can analyze the accu-
mulated regret up to step T over the context sequence {�t},
namely, RT =

PT
t=1 rt. Our MAB guarantees a sublinear

regret bound for both UCB and TS.

Theorem 3.1. For � > 0, take ct in the UCB as

ct = 2 log

✓
2s⇡2

t
2

6�

◆
t 2 N

where d is the number of PDE parameters, and s is the

total number of interface conditions. Conditioning on every

context sequence {�t}, let {at} be the action selected by

the UCB score under the above choice of {ct}. Then, with

probability at least 1 � �, the regret RT satisfies

RT .

s
2sT (log T)d+1 log

�
2sT 2

�

�

log(1 + ��2)
T = 1, 2, · · · , (6)

where the implicit constant is absolute (does not depend on

{ct} but depends on the domain X). In particular,

E[RT] .
s

2sT (log T)d+1 log (2sT 2)

log(1 + ��2)
, (7)

Moreover, (7) holds also for Thompson sampling.

We can see lim
T!1

E[RT]
T = 0, i.e., the average instantaneous

regret converges to zero. Since RT � 0, it means that our
MAB is able to find the optimal interface conditions (almost
surely) for every possible sequence of PDE parameters with
enough long run.

3.2 Sequential Multi-Arm Bandits
In practice, to achieve good and reliable performance, the
training of PINNs is often divided into two stages (Lu et al.,
2021). The first phase is stochastic training, typically with
ADAM optimizer (Kingma and Ba, 2014), to find a nice val-
ley of the loss landscape. The second phase is deterministic
optimization, typically with L-BFGS, to ensure convergence

GP Reward
Model

GP Reward
Model

MAB-1 MAB-2

<latexit sha1_base64="wvsOQ7fOmsWCGZc2RMwRRbb/y4Q=">AAACC3icbVC7TsMwFHV4lvIKMLJYrSohhipBFTBWsDAWiT6kNkSO47RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSpaPzrnXPvcECaNKO863tbK6tr6xWdoqb+/s7u3bB4cdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8nevdByIVFfxOTxLixWjIaUQx0oby7UptEAgWqklsrmwQEI2m5UGM9CiIMnR/6rtT3646dWdWcBm4BaiColq+/TUIBU5jwjVmSKm+6yTay5DUFDNink8VSRAeoyHpG8hRTJSXzXaZwpphQhgJaQ7XcMb+nshQrHK3pjN3qRa1nPxP66c6uvQyypNUE47nH0Upg1rAPBgYUkmwZhMDEJbUeIV4hCTC2sRXNiG4iysvg85Z3T2vN24b1eZVEUcJHIMKOAEuuABNcANaoA0weATP4BW8WU/Wi/VufcxbV6xi5gj8KevzB+pNmvk=</latexit>

a⇤
1

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

Stochastic training

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

<latexit sha1_base64="fF2CnGmhEm/eDlmTPIzxzI/z3Ho=">AAACGnicbVDLSsNAFJ34rPEVdelmsBSqSElKUZdFNy4r2Ac0MUwmk3bo5MHMRCih3+HGX3HjQhF34sa/cdIG1NYLwxzOuZd77vESRoU0zS9taXlldW29tKFvbm3v7Bp7+x0RpxyTNo5ZzHseEoTRiLQllYz0Ek5Q6DHS9UZXud69J1zQOLqV44Q4IRpENKAYSUW5hlWp2l7MfDEO1ZfZHpFocgrtEMmhF2Rocqz/4LsTt667RtmsmdOCi8AqQBkU1XKND9uPcRqSSGKGhOhbZiKdDHFJMSMT3U4FSRAeoQHpKxihkAgnm542gRXF+DCIuXqRhFP290SGQpF7V525TTGv5eR/Wj+VwYWT0ShJJYnwbFGQMihjmOcEfcoJlmysAMKcKq8QDxFHWKo08xCs+ZMXQades85qjZtGuXlZxFECh+AIVIEFzkETXIMWaAMMHsATeAGv2qP2rL1p77PWJa2YOQB/Svv8BkDRoF4=</latexit>

a⇤
2

Deterministic trainingMulti-Domain
PINNs:

<latexit sha1_base64="5qMuPrT0TOWH0oTNDSgxZcwqz8A=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQyCp7Aroh6DXjxGMA9IljA76U2GzD6Y6VXDmk/x4kERr36JN//GSbIHTSxoKKq66e7yEyk0Os63VVhZXVvfKG6WtrZ3dvfs8n5Tx6ni0OCxjFXbZxqkiKCBAiW0EwUs9CW0/NH11G/dg9Iiju5wnIAXskEkAsEZGqlnl7sIj5jJWGs6oV2QsmdXnKozA10mbk4qJEe9Z391+zFPQ4iQS6Z1x3US9DKmUHAJk1I31ZAwPmID6BgasRC0l81On9Bjo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XifF4NLLRJSkCBGfLwpSSTGm0xxoXyjgKMeGMK6EuZXyIVOMo0mrZEJwF19eJs3TqntePbs9q9Su8jiK5JAckRPikgtSIzekThqEkwfyTF7Jm/VkvVjv1se8tWDlMwfkD6zPH1ozlBE=</latexit>

loss `

Figure 1: The illustration of the sequential MAB model.

to the (local) minimum. Due to the different nature of the
two phases, the ideal interface conditions can vary as well.
To enable more flexible choices so as to further improve
the performance, we propose a sequential MAB model, as
illustrated in Fig. 1. Specifically, for each training phase,
we introduce a MAB similar to Sec 3.1, which updates a
separate GP reward model. To coordinate the two MABs
to optimize the final accuracy, the reward of the first MAB,
denoted by r1, includes not only the negative solution error
after the stochastic training phase, but also a discounted
error after the second phase,

r1 = �⇠1 + � · (�⇠2) (8)

where � is the discount factor, and ⇠1 and ⇠2 are the solution
errors after the stochastic and deterministic training phases,
respectively. In this way, the influence of the interface
conditions at the first training phase on the final solution
accuracy is also integrated into the learning of the GP reward
model. Next, we expand the context of the second MAB
with the training loss value ` after the first phase. In this way,
the training status of the first phase is also used to determine
the interface conditions for the second phase. The learning
of the sequential MABs is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB
algorithms is O(TR+

PT
t=1 t

3) where T is the total number
of iterations, R is the complexity of multi-domain PINNs,
and O(

PT
t=1 t

3) is the total time complexity of updating
the GP reward model to T . In practice, T is typically chosen
as a few hundreds (see the experimental section). Under
such a choice, running multi-domain PINNs is much more
costly than GP training, and the complexity is dominant by
O(TR). Hence, the time complexity is linear in the number
of iterations. The space complexity of our algorithm is
O(C + T

2), which is store the GP reward model and the
multi-domain PINN (with constant complexity O(C)).

4 Related Work

As an alternative to mesh-based numerical methods, PINNs
have achieved many success stories, e.g., (Raissi et al., 2020;
Chen et al., 2020; Sirignano and Spiliopoulos, 2018; Zhu
et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal
et al., 2020). Multi-domain PINNs, e.g., XPINNs (Jagtap

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

the reward model according to the solution error. When the
online playing is done and we no longer conduct exploration
to update our model, given a new PDE (say, indexed by �⇤),
we evaluate the predictive mean µ given �⇤ and every a 2

P . We then select the one with the largest predictive mean
(reward). We use the corresponding interface conditions to
run the multi-domain PINNs to solve the PDE. Our MAB
learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-
terface conditions for different PDEs, we perform regret
analysis. Consider a sequence of PDE parameters (i.e., con-
text) in the online playing, {�t}. Denote by a⇤

t and at

the optimal and MAB-selected interface condition set for
each �t, respectively. We define an instantaneous regret
rt = ⇠(�t,at) � ⇠(�t,a⇤

t). Then we can analyze the accu-
mulated regret up to step T over the context sequence {�t},
namely, RT =

PT
t=1 rt. Our MAB guarantees a sublinear

regret bound for both UCB and TS.

Theorem 3.1. For � > 0, take ct in the UCB as

ct = 2 log

✓
2s⇡2

t
2

6�

◆
t 2 N

where d is the number of PDE parameters, and s is the

total number of interface conditions. Conditioning on every

context sequence {�t}, let {at} be the action selected by

the UCB score under the above choice of {ct}. Then, with

probability at least 1 � �, the regret RT satisfies

RT .

s
2sT (log T)d+1 log

�
2sT 2

�

�

log(1 + ��2)
T = 1, 2, · · · , (6)

where the implicit constant is absolute (does not depend on

{ct} but depends on the domain X). In particular,

E[RT] .
s

2sT (log T)d+1 log (2sT 2)

log(1 + ��2)
, (7)

Moreover, (7) holds also for Thompson sampling.

We can see lim
T!1

E[RT]
T = 0, i.e., the average instantaneous

regret converges to zero. Since RT � 0, it means that our
MAB is able to find the optimal interface conditions (almost
surely) for every possible sequence of PDE parameters with
enough long run.

3.2 Sequential Multi-Arm Bandits
In practice, to achieve good and reliable performance, the
training of PINNs is often divided into two stages (Lu et al.,
2021). The first phase is stochastic training, typically with
ADAM optimizer (Kingma and Ba, 2014), to find a nice val-
ley of the loss landscape. The second phase is deterministic
optimization, typically with L-BFGS, to ensure convergence

GP Reward
Model

GP Reward
Model

MAB-1 MAB-2

<latexit sha1_base64="wvsOQ7fOmsWCGZc2RMwRRbb/y4Q=">AAACC3icbVC7TsMwFHV4lvIKMLJYrSohhipBFTBWsDAWiT6kNkSO47RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSpaPzrnXPvcECaNKO863tbK6tr6xWdoqb+/s7u3bB4cdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8nevdByIVFfxOTxLixWjIaUQx0oby7UptEAgWqklsrmwQEI2m5UGM9CiIMnR/6rtT3646dWdWcBm4BaiColq+/TUIBU5jwjVmSKm+6yTay5DUFDNink8VSRAeoyHpG8hRTJSXzXaZwpphQhgJaQ7XcMb+nshQrHK3pjN3qRa1nPxP66c6uvQyypNUE47nH0Upg1rAPBgYUkmwZhMDEJbUeIV4hCTC2sRXNiG4iysvg85Z3T2vN24b1eZVEUcJHIMKOAEuuABNcANaoA0weATP4BW8WU/Wi/VufcxbV6xi5gj8KevzB+pNmvk=</latexit>

a⇤
1

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

Stochastic training

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

<latexit sha1_base64="fF2CnGmhEm/eDlmTPIzxzI/z3Ho=">AAACGnicbVDLSsNAFJ34rPEVdelmsBSqSElKUZdFNy4r2Ac0MUwmk3bo5MHMRCih3+HGX3HjQhF34sa/cdIG1NYLwxzOuZd77vESRoU0zS9taXlldW29tKFvbm3v7Bp7+x0RpxyTNo5ZzHseEoTRiLQllYz0Ek5Q6DHS9UZXud69J1zQOLqV44Q4IRpENKAYSUW5hlWp2l7MfDEO1ZfZHpFocgrtEMmhF2Rocqz/4LsTt667RtmsmdOCi8AqQBkU1XKND9uPcRqSSGKGhOhbZiKdDHFJMSMT3U4FSRAeoQHpKxihkAgnm542gRXF+DCIuXqRhFP290SGQpF7V525TTGv5eR/Wj+VwYWT0ShJJYnwbFGQMihjmOcEfcoJlmysAMKcKq8QDxFHWKo08xCs+ZMXQades85qjZtGuXlZxFECh+AIVIEFzkETXIMWaAMMHsATeAGv2qP2rL1p77PWJa2YOQB/Svv8BkDRoF4=</latexit>

a⇤
2

Deterministic trainingMulti-Domain
PINNs:

<latexit sha1_base64="5qMuPrT0TOWH0oTNDSgxZcwqz8A=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQyCp7Aroh6DXjxGMA9IljA76U2GzD6Y6VXDmk/x4kERr36JN//GSbIHTSxoKKq66e7yEyk0Os63VVhZXVvfKG6WtrZ3dvfs8n5Tx6ni0OCxjFXbZxqkiKCBAiW0EwUs9CW0/NH11G/dg9Iiju5wnIAXskEkAsEZGqlnl7sIj5jJWGs6oV2QsmdXnKozA10mbk4qJEe9Z391+zFPQ4iQS6Z1x3US9DKmUHAJk1I31ZAwPmID6BgasRC0l81On9Bjo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XifF4NLLRJSkCBGfLwpSSTGm0xxoXyjgKMeGMK6EuZXyIVOMo0mrZEJwF19eJs3TqntePbs9q9Su8jiK5JAckRPikgtSIzekThqEkwfyTF7Jm/VkvVjv1se8tWDlMwfkD6zPH1ozlBE=</latexit>

loss `

Figure 1: The illustration of the sequential MAB model.

to the (local) minimum. Due to the different nature of the
two phases, the ideal interface conditions can vary as well.
To enable more flexible choices so as to further improve
the performance, we propose a sequential MAB model, as
illustrated in Fig. 1. Specifically, for each training phase,
we introduce a MAB similar to Sec 3.1, which updates a
separate GP reward model. To coordinate the two MABs
to optimize the final accuracy, the reward of the first MAB,
denoted by r1, includes not only the negative solution error
after the stochastic training phase, but also a discounted
error after the second phase,

r1 = �⇠1 + � · (�⇠2) (8)

where � is the discount factor, and ⇠1 and ⇠2 are the solution
errors after the stochastic and deterministic training phases,
respectively. In this way, the influence of the interface
conditions at the first training phase on the final solution
accuracy is also integrated into the learning of the GP reward
model. Next, we expand the context of the second MAB
with the training loss value ` after the first phase. In this way,
the training status of the first phase is also used to determine
the interface conditions for the second phase. The learning
of the sequential MABs is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB
algorithms is O(TR+

PT
t=1 t

3) where T is the total number
of iterations, R is the complexity of multi-domain PINNs,
and O(

PT
t=1 t

3) is the total time complexity of updating
the GP reward model to T . In practice, T is typically chosen
as a few hundreds (see the experimental section). Under
such a choice, running multi-domain PINNs is much more
costly than GP training, and the complexity is dominant by
O(TR). Hence, the time complexity is linear in the number
of iterations. The space complexity of our algorithm is
O(C + T

2), which is store the GP reward model and the
multi-domain PINN (with constant complexity O(C)).

4 Related Work

As an alternative to mesh-based numerical methods, PINNs
have achieved many success stories, e.g., (Raissi et al., 2020;
Chen et al., 2020; Sirignano and Spiliopoulos, 2018; Zhu
et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal
et al., 2020). Multi-domain PINNs, e.g., XPINNs (Jagtap

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks

action a 2 P (UCB or TS), and select the one with the
highest score (corresponding to the best tradeoff).

In the online scenario, we can keep using UCB or TS to
select the action for incoming new PDEs while improving
the reward model according to the solution error. When the
online playing is done and we no longer conduct exploration
to update our model, given a new PDE (say, indexed by �⇤),
we evaluate the predictive mean µ given �⇤ and every a 2

P . We then select the one with the largest predictive mean
(reward). We use the corresponding interface conditions to
run the multi-domain PINNs to solve the PDE. Our MAB
learning is summarized in Algorithm 1.

To ensure our MAB is capable of finding the optimal in-
terface conditions for different PDEs, we perform regret
analysis. Consider a sequence of PDE parameters (i.e., con-
text) in the online playing, {�t}. Denote by a⇤

t and at

the optimal and MAB-selected interface condition set for
each �t, respectively. We define an instantaneous regret
⇣t = ⇠(�t,at) � ⇠(�t,a⇤

t). Then we can analyze the accu-
mulated regret up to step T over the context sequence {�t},
namely, RT =

PT
t=1 ⇣t. Our MAB guarantees a sublinear

regret bound for both UCB and TS.
Theorem 3.1. For � > 0, take ct in the UCB as

ct = 2 log

✓
2s⇡2

t
2

6�

◆
t 2 N

where d is the number of PDE parameters, and s is the

total number of interface conditions. Conditioning on every

context sequence {�t}, let {at} be the action selected by

the UCB score under the above choice of {ct}. Then, with

probability at least 1 � �, the regret RT satisfies

RT .
s

2sT (log T)d+1 log
�

2sT 2

�

�

log(1 + �
�2
0)

T = 1, 2, · · · , (7)

where the implicit constant is absolute (does not depend on

{ct} but depends on the domain X). In particular,

E[RT] .
s

2sT (log T)d+1 log (2sT 2)

log(1 + �
�2
0)

, (8)

Moreover, (8) holds also for Thompson sampling.

We can see lim
T!1

E[RT]
T = 0, i.e., the average instantaneous

regret converges to zero. Since RT � 0, it means that our
MAB is able to find the optimal interface conditions (almost
surely) for every possible sequence of PDE parameters with
enough long run.

3.2 Sequential Multi-Arm Bandits
In practice, to achieve good and reliable performance, the
training of PINNs is often divided into two stages (Lu et al.,

GP Reward
Model

GP Reward
Model

MAB-1 MAB-2

<latexit sha1_base64="wvsOQ7fOmsWCGZc2RMwRRbb/y4Q=">AAACC3icbVC7TsMwFHV4lvIKMLJYrSohhipBFTBWsDAWiT6kNkSO47RWHTuyHaQq6s7Cr7AwgBArP8DG3+C0GaDlSpaPzrnXPvcECaNKO863tbK6tr6xWdoqb+/s7u3bB4cdJVKJSRsLJmQvQIowyklbU81IL5EExQEj3WB8nevdByIVFfxOTxLixWjIaUQx0oby7UptEAgWqklsrmwQEI2m5UGM9CiIMnR/6rtT3646dWdWcBm4BaiColq+/TUIBU5jwjVmSKm+6yTay5DUFDNink8VSRAeoyHpG8hRTJSXzXaZwpphQhgJaQ7XcMb+nshQrHK3pjN3qRa1nPxP66c6uvQyypNUE47nH0Upg1rAPBgYUkmwZhMDEJbUeIV4hCTC2sRXNiG4iysvg85Z3T2vN24b1eZVEUcJHIMKOAEuuABNcANaoA0weATP4BW8WU/Wi/VufcxbV6xi5gj8KevzB+pNmvk=</latexit>

a⇤
1

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

Stochastic training

<latexit sha1_base64="SVmA5O5KXj+L4n3cNXjZk+BRy1M=">AAACCnicbVDLSgMxFM3UV62vUZduokWoIGVGirosunFZwT6gM5RMJtOGZpIhyQhl6NqNv+LGhSJu/QJ3/o2ZdhZavRByOOde7rknSBhV2nG+rNLS8srqWnm9srG5tb1j7+51lEglJm0smJC9ACnCKCdtTTUjvUQSFAeMdIPxda5374lUVPA7PUmIH6MhpxHFSBtqYB/WvECwUE1i82VeQDSankIvRnoURBmanlQGdtWpO7OCf4FbgCooqjWwP71Q4DQmXGOGlOq7TqL9DElNMSPTipcqkiA8RkPSN5CjmCg/m50yhceGCWEkpHlcwxn7cyJDscrNms7co1rUcvI/rZ/q6NLPKE9STTieL4pSBrWAeS4wpJJgzSYGICyp8QrxCEmEtUkvD8FdPPkv6JzV3fN647ZRbV4VcZTBATgCNeCCC9AEN6AF2gCDB/AEXsCr9Wg9W2/W+7y1ZBUz++BXWR/fxU2aTw==</latexit>

(�,a)

<latexit sha1_base64="fF2CnGmhEm/eDlmTPIzxzI/z3Ho=">AAACGnicbVDLSsNAFJ34rPEVdelmsBSqSElKUZdFNy4r2Ac0MUwmk3bo5MHMRCih3+HGX3HjQhF34sa/cdIG1NYLwxzOuZd77vESRoU0zS9taXlldW29tKFvbm3v7Bp7+x0RpxyTNo5ZzHseEoTRiLQllYz0Ek5Q6DHS9UZXud69J1zQOLqV44Q4IRpENKAYSUW5hlWp2l7MfDEO1ZfZHpFocgrtEMmhF2Rocqz/4LsTt667RtmsmdOCi8AqQBkU1XKND9uPcRqSSGKGhOhbZiKdDHFJMSMT3U4FSRAeoQHpKxihkAgnm542gRXF+DCIuXqRhFP290SGQpF7V525TTGv5eR/Wj+VwYWT0ShJJYnwbFGQMihjmOcEfcoJlmysAMKcKq8QDxFHWKo08xCs+ZMXQades85qjZtGuXlZxFECh+AIVIEFzkETXIMWaAMMHsATeAGv2qP2rL1p77PWJa2YOQB/Svv8BkDRoF4=</latexit>

a⇤
2

Deterministic trainingMulti-Domain
PINNs:

<latexit sha1_base64="5qMuPrT0TOWH0oTNDSgxZcwqz8A=">AAAB+nicbVDLSgNBEJyNrxhfGz16GQyCp7Aroh6DXjxGMA9IljA76U2GzD6Y6VXDmk/x4kERr36JN//GSbIHTSxoKKq66e7yEyk0Os63VVhZXVvfKG6WtrZ3dvfs8n5Tx6ni0OCxjFXbZxqkiKCBAiW0EwUs9CW0/NH11G/dg9Iiju5wnIAXskEkAsEZGqlnl7sIj5jJWGs6oV2QsmdXnKozA10mbk4qJEe9Z391+zFPQ4iQS6Z1x3US9DKmUHAJk1I31ZAwPmID6BgasRC0l81On9Bjo/RpECtTEdKZ+nsiY6HW49A3nSHDoV70puJ/XifF4NLLRJSkCBGfLwpSSTGm0xxoXyjgKMeGMK6EuZXyIVOMo0mrZEJwF19eJs3TqntePbs9q9Su8jiK5JAckRPikgtSIzekThqEkwfyTF7Jm/VkvVjv1se8tWDlMwfkD6zPH1ozlBE=</latexit>

loss `

Figure 1: The illustration of the sequential MAB model.

2021). The first phase is stochastic training, typically with
ADAM optimizer (Kingma and Ba, 2014), to find a nice val-
ley of the loss landscape. The second phase is deterministic
optimization, typically with L-BFGS, to ensure convergence
to the (local) minimum. Due to the different nature of the
two phases, the ideal interface conditions can vary as well.
To enable more flexible choices so as to further improve
the performance, we propose a sequential MAB model, as
illustrated in Fig. 1. Specifically, for each training phase,
we introduce a MAB similar to Sec 3.1, which updates a
separate GP reward model. To coordinate the two MABs
to optimize the final accuracy, the reward of the first MAB,
denoted by r1, includes not only the negative solution error
after the stochastic training phase, but also a discounted
error after the second phase,

r1 = �⇠1 + � · (�⇠2) (9)

where � is the discount factor, and ⇠1 and ⇠2 are the solution
errors after the stochastic and deterministic training phases,
respectively. In this way, the influence of the interface
conditions at the first training phase on the final solution
accuracy is also integrated into the learning of the GP reward
model. Next, we expand the context of the second MAB
with the training loss value ` after the first phase. In this way,
the training status of the first phase is also used to determine
the interface conditions for the second phase. The learning
of the sequential MABs is summarized in Algorithm 2.

Algorithm Complexity. The time complexity of both MAB
algorithms is O(TR+

PT
t=1 t

3) where T is the total number
of iterations, R is the complexity of multi-domain PINNs,
and O(

PT
t=1 t

3) is the total time complexity of updating
the GP reward model to T . In practice, T is typically chosen
as a few hundreds (see the experimental section). Under
such a choice, running multi-domain PINNs is much more
costly than GP training, and the complexity is dominant by
O(TR). Hence, the time complexity is linear in the number
of iterations. The space complexity of our algorithm is
O(C + T

2), which is store the GP reward model and the
multi-domain PINN (with constant complexity O(C)).

4 Related Work

As an alternative to mesh-based numerical methods, PINNs
have achieved many success stories, e.g., (Raissi et al., 2020;

Roughly speaking, for enough long run, our MAB
guarantees to find the optimal conditions for every
sequence of PDEs

Experimental Results
Domains/PDEs

2D Poisson 1D Advection 1D Reaction 1D Burger’s

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

<latexit sha1_base64="0nAD34CCyLEIyR7RYDU1WaNxE2k=">AAACLXicbVDLSgMxFM34tr6qLt0Ei6AgZUZEBRFEXbisYFXolJLJ3NFg5kFyR1vC/JAbf0UEFxVx62+Yjl34OhA4nHMuN/cEmRQaXbfvjIyOjU9MTk1XZmbn5heqi0sXOs0VhyZPZaquAqZBigSaKFDCVaaAxYGEy+D2eOBf3oHSIk3OsZdBO2bXiYgEZ2ilTvXEvxchoJAhmKhY72729qneoAfUjxTjJrIKLaXC+AhdNDHrFh1jcwWNyri1OtWaW3dL0L/EG5IaGaLRqT77YcrzGBLkkmnd8twM24YpFFxCUfFzDRnjt+waWpYmLAbdNuW1BV2zSkijVNmXIC3V7xOGxVr34sAmY4Y3+rc3EP/zWjlGe20jkixHSPjXoiiXFFM6qI6GQgFH2bOEcSXsXym/YbYmtAVXbAne75P/kouturdT3z7brh0eDeuYIitklawTj+ySQ3JKGqRJOHkgT6RPXp1H58V5c96/oiPOcGaZ/IDz8QlwZ6ep</latexit>

ef(x, y; s) = f(x, y; s)

maxx,yf(x, y; s)

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

Manuscript under review by AISTATS 2023

space with which the tasks can make predictions via match-
ing the training points, e.g., nonparametric nearest neigh-
bors (Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017; Oreshkin et al., 2018; Allen et al., 2019), (2) learning
black-box models (e.g., neural networks) that map the task
dataset and hyperparameters to the optimal model param-
eters or parameter updating rules, e.g., (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Li and Malik, 2016; Ravi
and Larochelle, 2017; Santoro et al., 2016; Duan et al., 2016;
Wang et al., 2016; Munkhdalai and Yu, 2017; Mishra et al.,
2017), and (3) bi-level optimization where the outer level
optimizes the hyperparameters and the inner level optimizes
the model parameters given the hyperparameters (Finn et al.,
2017; Finn, 2018; Bertinetto et al., 2018; Lee et al., 2019;
Zintgraf et al., 2019; Li et al., 2017; Finn et al., 2018; Zhou
et al., 2018; Harrison et al., 2018). A recent influential
work is the model-agnostic meta learning (MAML) (Finn
et al., 2017), which uses the bi-level optimization framework
to learn a good model initialization for a family of tasks.
There have been a large number of subsequent works, such
as (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018;
Song et al., 2020; Liu et al., 2019; Penwarden et al., 2021).
In our work, the task family consists of parametric PDEs,
and the learning model is the multi-domain PINNs. The
hyperparameters are the set of interface conditions, not the
model initialization. Another difference is that our method
predicts task-specific hyperparameters, rather than assumes
one single set of conditions apply to all the tasks (PDEs).

Multi-arm bandit is a classical online decision making
framework (Lai et al., 1985; Auer et al., 2002a,b; Maha-
jan and Teneketzis, 2008; Bubeck et al., 2012), and have
numerous applications, such as online advertising (Avad-
hanula et al., 2021), collaborative filtering (Li et al., 2016),
clinical trials (Aziz et al., 2021) and robot control (Laskey
et al., 2015). To our knowledge, our work is the first to
use MAB for meta learning of task-specific hyperparame-
ters , which is advantageous in its simplicity and efficiency.
MAB can be viewed as an instance of reinforcement learn-
ing (RL) (Sutton and Barto, 2018). But it only needs to
online estimates a reward function. While one can design
more expressive RL models to meanwhile learn a Markov
decision process (in MAB, we simply use UCB or TS), it
often demands we run a massive number of PINN training
trajectories, which is much more expensive. The model
estimation is also much more challenging.

5 Experiment

To evaluate METALIC, we considered four benchmark equa-
tion families. We list the equations and domain decomposi-
tion settings in the following.

The Poisson Equation. First, we considered a 2D Poisson
equation with a parameterized source function,

uxx + uyy = ef(x, y; s) (8)

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

y

�0.04467 0.000000.00000

(a) Solution at s = 20

0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

(b) Subdomains

Figure 2: The Poisson equation. The interface is the green line at
y = 0.5. Blue and black dots show the sampled boundary points
in each subdomain, and the internal dots (red and cyan) are the
sampled collocation points inside each subdomain.

where (x, y) 2 [0, 1] ⇥ [0, 1], ef(x, y; s) =
f(x, y; s)/ maxx,y f(x, y; s), and

f(x, y; s) = [erf((x � 0.25)s) � erf((x � 0.75)s)]

· [erf((y � 0.25)s) � erf((y � 0.75)s)] , (9)

where erf(z) = 2p
⇡

R z
0 e�t2dt, and s 2 [0, 50] is called

the sharpness parameter that controls the sharpness of the
interior square in the source. We used Dirichlet boundary
conditions, and ran a finite difference solver to obtain an
accurate “gold-standard” solution. To run multi-domain
PINNs, we split the domain into two subdomains, where the
interface is a line at y = 0.5. We visualize an exemplar so-
lution and the subdomains, including the sampled boundary
and collocation points in Fig. 2.

Advection Equation. We next considered a 1D advection
(one-way wave) equation,

ut + �ux = 0

where x 2 [0, 2⇡], t 2 [0, 1], and � is the PDE param-
eter denoting the wave speed. We used Dirichlet bound-
ary conditions, and the solution has an analytical form,
u(x, t) = h(x��t) were h(x) is the initial condition (which
we select as h(x) = sin(x)). For domain decomposition,
we split the domain at t = 0.5 to obtain two subdomains.
Fig. 3 shows an exemplar solution and the subdomains with
the interface.

Reaction Equation. Third, we evaluate a 1D reaction equa-
tion,

ut � ⇢u(1 � u) = 0

where ⇢ is the reaction coefficient (ODE parameter), x 2

[0, 2⇡], t 2 [0, 1] and u(x, 0) = e
� (x�⇡)2

2(⇡/4)2 . The exact solu-
tion is u(x, t) = u(x, 0) · [e⇢t/ (u(x, 0)e⇢t + 1 � u(x, 0))].
We split the domain at t = 0.5 to obtain two subdomains.
Although not required for well-posedness of the ODE sys-
tem, because we are solving for the PINN space-time field

Manuscript under review by AISTATS 2023

0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

t

�1 0 1

(a) Solution at � = 30

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 3: Advection equation. The interface is the green line at
t = 0.5.

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

00 1

(a) Solution at ⇢ = 5.0

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 4: Reaction equation. The interface is at t = 0.5.

u(x, t), we use the exact solution to define a boundary loss
term. This enhances training without compromising the
time partitioning we wish to highlight. We show a solution
example and the subdomains in Fig. 4.

Burger’s Equation. Fourth, we considered the viscous
Burger’s equation,

ut + uux = ⌫uxx

where ⌫ 2 [0.001, 0.05] is the viscosity (PDE parameter),
x 2 [�1, 1], t 2 [0, 1], and u(x, 0) = � sin(⇡x). We ran
a numerical solver to obtain an accurate “gold-standard”
solution. To decompose the domain, we take the middle
portion that includes the shock waves as one subdomain,
namely, ⌦1 : x 2 [�0.1, 0.1], t 2 [0, 1], and the remaining
as the other subdomain, ⌦2 : x 2 [�1, �0.1] \ [0.1, 1], t 2
[0, 1]. Hence, the interface consists of two lines. See Fig. 5
for the illustration and solution example.

To evaluate METALIC, we used 9 interface conditions,
which are listed in the supplementary material. For the
PINN in each subdomain, we used two layers, with 20 neu-
rons per layer and tanh activation function. We randomly
sampled 1,000 collocation points and 100 boundary points
for each PINN. To inject the interface conditions, we then

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

x
0.0

0.2

0.4

0.6

0.8

1.0

t

�1 0 1

(a) Solution at ⌫ = 0.001

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 5: Burger’s equation. The interfaces are at x = �0.1
and x = 0.1. The middle portion (filled with cyan dots) is the
first subdomain, and the remaining parts constitute the second
subdomain.

randomly sampled 101 interface points for the Poisson, ad-
vection and reaction equations, and 802 interface points for
Burger’s equation. We set �b = 20 and �I = 5, which fol-
lows the insight of (Wang et al., 2021, 2022) to adopt large
weights for the boundary and interface terms so as to prevent
the training of PINNs from being dominated by the residual
term. We denote our single MAB by METALIC-single, and
sequential MABs by METALIC-seq. For the latter, we set
the discount factor � = 0.9 (see (7)). For better numerical
stability, we used the relative L2 error in the log domain to
obtain the reward for updating the GP surrogate models. The
running of the multi-domain PINNs consists of 10K ADAM
epochs (with learning rate 10�3) and then 50K L-BFGS
iterations (the first order optimality and parameter change
tolerances set to 10�6 and 10�9 respectively). We set c = 1
to compute the UCB score. We ran 200 plays (trials) for our
method. For static (offline) test, we randomly sampled 100
PDEs (which do not overlap with the PDEs sampled during
the online playing). We then used the learned reward model
to determine the best interface conditions for each particular
PDE (according to the predictive mean), with which we ran
the multi-domain PINNs to solve the PDE, and computed
the relative L2 error.

First, to examine the online performance of METALIC, we
looked into the accumulated solution error along with the
number of plays. We compared with randomly selecting
the arm at each play. In the case of running METALIC-
seq, this baseline correspondingly randomly selects the arm
twice, one at the stochastic training phase, and the other at
the deterministic phase. The results are shown in Fig. 6
and 7. As we can see, the accumulated error of METALIC
with both UCB and TS grows much slower, i.e., sublinearly,
than the random selection approach (note that the reward
of the optimal action is unknown due to the randomness in
the running of PINNs, and we cannot compute the regret).
This has shown that our method achieves a much better
exploration-exploitation tradeoff in the online interface con-
dition decision and model updating, which is consist with

Manuscript under review by AISTATS 2023

0 2 4
x

0.0

0.2

0.4

0.6

0.8

1.0

t

�1 0 1

(a) Solution at � = 30

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 3: Advection equation. The interface is the green line at
t = 0.5.

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

00 1

(a) Solution at ⇢ = 5.0

0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 4: Reaction equation. The interface is at t = 0.5.

u(x, t), we use the exact solution to define a boundary loss
term. This enhances training without compromising the
time partitioning we wish to highlight. We show a solution
example and the subdomains in Fig. 4.

Burger’s Equation. Fourth, we considered the viscous
Burger’s equation,

ut + uux = ⌫uxx

where ⌫ 2 [0.001, 0.05] is the viscosity (PDE parameter),
x 2 [�1, 1], t 2 [0, 1], and u(x, 0) = � sin(⇡x). We ran
a numerical solver to obtain an accurate “gold-standard”
solution. To decompose the domain, we take the middle
portion that includes the shock waves as one subdomain,
namely, ⌦1 : x 2 [�0.1, 0.1], t 2 [0, 1], and the remaining
as the other subdomain, ⌦2 : x 2 [�1, �0.1] \ [0.1, 1], t 2
[0, 1]. Hence, the interface consists of two lines. See Fig. 5
for the illustration and solution example.

To evaluate METALIC, we used 9 interface conditions,
which are listed in the supplementary material. For the
PINN in each subdomain, we used two layers, with 20 neu-
rons per layer and tanh activation function. We randomly
sampled 1,000 collocation points and 100 boundary points
for each PINN. To inject the interface conditions, we then

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

x
0.0

0.2

0.4

0.6

0.8

1.0

t

�1 0 1

(a) Solution at ⌫ = 0.001

�1.00 �0.75 �0.50 �0.25 0.00 0.25 0.50 0.75 1.00

x

0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Subdomains

Figure 5: Burger’s equation. The interfaces are at x = �0.1
and x = 0.1. The middle portion (filled with cyan dots) is the
first subdomain, and the remaining parts constitute the second
subdomain.

randomly sampled 101 interface points for the Poisson, ad-
vection and reaction equations, and 802 interface points for
Burger’s equation. We set �b = 20 and �I = 5, which fol-
lows the insight of (Wang et al., 2021, 2022) to adopt large
weights for the boundary and interface terms so as to prevent
the training of PINNs from being dominated by the residual
term. We denote our single MAB by METALIC-single, and
sequential MABs by METALIC-seq. For the latter, we set
the discount factor � = 0.9 (see (7)). For better numerical
stability, we used the relative L2 error in the log domain to
obtain the reward for updating the GP surrogate models. The
running of the multi-domain PINNs consists of 10K ADAM
epochs (with learning rate 10�3) and then 50K L-BFGS
iterations (the first order optimality and parameter change
tolerances set to 10�6 and 10�9 respectively). We set c = 1
to compute the UCB score. We ran 200 plays (trials) for our
method. For static (offline) test, we randomly sampled 100
PDEs (which do not overlap with the PDEs sampled during
the online playing). We then used the learned reward model
to determine the best interface conditions for each particular
PDE (according to the predictive mean), with which we ran
the multi-domain PINNs to solve the PDE, and computed
the relative L2 error.

First, to examine the online performance of METALIC, we
looked into the accumulated solution error along with the
number of plays. We compared with randomly selecting
the arm at each play. In the case of running METALIC-
seq, this baseline correspondingly randomly selects the arm
twice, one at the stochastic training phase, and the other at
the deterministic phase. The results are shown in Fig. 6
and 7. As we can see, the accumulated error of METALIC
with both UCB and TS grows much slower, i.e., sublinearly,
than the random selection approach (note that the reward
of the optimal action is unknown due to the randomness in
the running of PINNs, and we cannot compute the regret).
This has shown that our method achieves a much better
exploration-exploitation tradeoff in the online interface con-
dition decision and model updating, which is consist with

Online Performance (Trial and Error)

Our methods

Offline Performance

Double
Volumed
PINNs

Visualize Solution Errors

Explainable Selected Interfaces

• Predicts in groupings vs. random
• METALIC-Single differs from METALIC-Seq
• Start of training requires different conditions than the end of

training

• Gradient-enhanced Residual never chosen
• Robust METALIC able to distinguish valid and invalid terms
• Agrees with preliminary Poisson study that flux is necessary

Our methods

