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Abstract. Fourier Neural Operator (FNQO) is a popular operator learning framework. It not only achieves the state-of-the-art performance in many tasks, but also is efficient in training and prediction.
However, collecting training data for the FNO can be a costly bottleneck in practice, because it often demands expensive physical simulations. To overcome this problem, we propose Mullti-
Resolution Active learning of FNO (MRA-FNO), which can dynamically select the input functions and resolutions to lower the data cost as much as possible while optimizing the learning
efficiency. Specifically, we propose a probabilistic multi-resolution FNO and use ensemble Monte-Carlo to develop an effective posterior inference algorithm. To conduct active learning, we maximize
a utility-cost ratio as the acquisition function to acquire new examples and resolutions at each step. We use moment matching and the matrix determinant lemma to enable tractable, efficient utility
computation. Furthermore, we develop a cost annealing framework to avoid over-penalizing high-resolution queries at the early stage. The over-penalization is severe when the cost difference s
significant between the resolutions, which renders active learning often stuck at low-resolution queries and inferior performance. Our method overcomes this problem and applies to general multi-
fidelity active learning and optimization problems. We have shown the advantage of our method in several benchmark operator learning tasks.

Introduction & Motivation

Physics vs. Machine Learning
* Physics: Accurate, Principled, Extrapolate Well o
* Machine Learning: Flexible, Efficient
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Multi-Resolution Active Learning Multi-resolution acquisition function
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Computational Physics: Finding the solutions of PDEs vV *H =1+ %0 u(h,r) = I(y(h", e,),y(h™, er)|D)
* Analytical solutions: closed forms but not always feasible Step1: 'V'Ome Carlo approximation
* Numerical solutions: accurate, reliable but slow and no generalization = Z]I (h",e,),y(h/, er)|D)
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Step 2. Predictive distribution via moment matching

Analytical Numerical (e.g., FEM)
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Step 3 : Efficient computatlon via Weinstein-
Aronszajn ldentity

log det [cov(y|D)] = logdet [A + BB ']
— log det[A] + logdetI + B' A !B].

Data-Driven Computational Physics
» Learning PDE solutions directly from data
 Efficient prediction and generalization
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Neural Operators and Fourier Neural Operators
« Solutions of PDEs are applying operators to the source/parameter/initial functions
» Learning the parametric mapping Gy : A — U between functions to functions
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Experiments

Evaluations of Multi-Resolution Active Learning
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However, Data Costs for Training FNO!!!
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Convolutional Theorem
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X OpenVFOAM® & Visualization of Pointwise Error after Active Learning (Navier-Stocks)
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Ablation Study 1 : Predictive performance of mixed-resolutions examples vs.
low-resolutions only examples
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* Probabilistic Multi-Resolution FNO
* Active Learning for FNO

Contributions
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RObUSt performance Vla COSt anneallng FNO 0.0575 + 0.0031 0.0891 + 0.0078 FNO 296.31%  218.54%
FNO-Dropout 0.0791 £ 0.0035  0.1038 + 0.0056 FNO-Dropout  331.64%  233.04%

FNO-SGLD 0.0804 £ 0.0049 0.0933 + 0.0074 FNO-SGLD  200.62%  183.60%
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Probabilistic Multi-Resolution ENO Ablation Study 2 : Queried Resolutions Statistics via Cost-Annealing
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