
MethodsIntroduction

• Probabilistic surrogate: distribution of objective functions
• Acquisition function: exploration-exploitation trade-off

Bayesian Optimization(BO): Black-box optimization without access of 
gradient information.

(Neumann-Brosig et al., 2018)
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xt+1 = argmax at(x)

• Low-fidelity query: cheap but inaccurate
• High-fidelity query: accurate but expensive

Multi-Fidelity Bayesian Optimization (MFBO): Objective function 
can be evaluated at different fidelities:
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mt+1, xt+1 = argmax at(m,x)

Multi-fidelity approximation of the Branin function, Perdikaris et al. 2017 

Ab
st
ra
ct Bayesian optimization (BO) is a popular framework for optimizing black-box functions. In many applications, the objective function can be 

evaluated at multiple fidelities to enable a trade-off between the cost and accuracy. To reduce the optimization cost, many multi-fidelity BO 
methods have been proposed. Despite their success, these methods either ignore or over-simplify the strong, complex correlations across 
the fidelities. While the acquisition function is therefore easy and convenient to calculate, these methods can be inefficient in estimating the 
objective function. To address this issue, we propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can 
flexibly capture all kinds of complicated relationships between the fidelities to improve the objective function estimation and hence the 
optimization performance. We use sequential, fidelity-wise Gauss-Hermite quadrature and moment-matching to compute a mutual 
information-based acquisition function in a tractable and highly efficient way. We show the advantages of our method in both synthetic 
benchmark datasets and real-world applications in engineering design.

Multi-fidelity Surrogate Modeling with Deep Neural Nets

Calculating Mutual information-based Acquisition Function
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• Recursive Gaussian-Hermite quadrature
• Fidelity-wise forward moment-matching

Integrate out 
previous output 
by quadrature
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Experiments
Synthetic Function - Three fidelities of Branin
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Real-world application – Thermal Conductor Design
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Real-world application – Plate Vibration Design
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