
Motivation
Physical Simulations by Solving PDEs:
• Daily phenomena are dominated by fundamental physical laws  
• Fundamental physical laws are written as Partial differential equations 

(PDEs) systems

Ab
st
ra
ct Multi-fidelity modeling and learning is important in physical simulation related applications. It can leverage both low-fidelity and high-fidelity examples for 

training so as to reduce the cost of data generation yet still achieving good performance. While existing approaches only model finite, discrete fidelities, in 
practice, the feasible fidelity choice is often infinite, which can correspond to a continuous mesh spacing or finite element length.   In this paper, we propose 
Infinite Fidelity Coregionalization (IFC). Given the data, our method can extract and exploit rich information within infinite, continuous fidelities to bolster the 
prediction accuracy. Our model can interpolate and/or extrapolate the predictions to novel fidelities that are not covered by the training data. Specifically, we 
introduce a low-dimensional latent output as a continuous function of the fidelity and input, and multiple it with a basis matrix to predict high-dimensional 
solution outputs. We model the latent output as a neural Ordinary Differential Equation (ODE) to capture the complex relationships within and integrate 
information throughout the continuous fidelities.  We then use Gaussian processes or another ODE to estimate the fidelity-varying bases. For efficient 
inference, we reorganize the bases as a tensor, and use a tensor-Gaussian variational posterior approximation to develop a scalable inference algorithm for 
massive outputs. We show the advantage of our method in several benchmark tasks in computational physics.
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Our Contribution:
• IFC: A novel multi-fidelity modeling for very high-dimensional outputs
• Flexibly handles infinity/continuous fidelities while captures all fidelities’ 

nonlinear, non-stationary correlations.
• Predicts on unseen fidelities.

Methods

Experiment
Evaluation 1: Predictive performanceFluid dynamics Heat

thermal diffusivity 

Key challenges of scientific computing:
• Identify the governing model for complex systems 
• Efficiently solving large-scale non-linear systems of equations

Numerical Solvers:
• (Exact) accurate yet solutions
• Slow
• Do not generalize over the same domain
Data-drive Solvers(Surrogate Learning, Operator Learning):
• Fast inference with new PDE
• Generalize over domain problems
• Prepare large amount of data from numerical solvers
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Figure 1. Conventional PDEs solvers Figure 2. Data-driven PDEs solvers

Multi-fidelity Modeling:
• Conventional solvers usually have multi-fidelity evaluations natively
• High-fidelity solutions: expensive but accurate
• Low-fidelity solutions: cheap but inaccurate
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Linear Model of Coregionalization (LMC):
• Low-dimensional inputs, 
• very-high dimensional outputs Low-dimensional output
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Modeling:

Multi-fidelity LMC

Latent output of m-th fidelity Actual output of m-th fidelity

NN that generate m-th fidelity latent outputs Shared basis of m-th fidelity 

Step 1: extending the latent outputs to the infinite fidelity case 

Infinitesimal fidelity Adjustment term

A parametric ODE model for latent outputs

Rearrange the terms
Initial model

Dynamic model

Step 2: project the latent outputs through shared basis

• IFC-GPODE (GP treatment of basis matrix) 

• IFC-ODE2 (ODE treatment of basis matrix) 

Learning / Inference:
• IFC-GPODE: SVI with Kronecker tensor normal

• IFC-ODE2 : end-to-end parametric ODE learning

Evaluation 2: Visualize error fields

Evaluation 3: Predict on unseen fidelities
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