

Solving High Frequency and Multi-Scale PDEs with Gaussian Processes

Shikai Fang*, Madison Cooley*, Da Long*, Shibo Li, Robert M. Kirby, Shandian Zhe

➤ ML-based PDE Solvers help scientific and engineering tasks

> Canonical form of PINN family solvers

DNN as surrogate model: $\widehat{u}_{\theta}(\mathbf{x}) \approx u_{\theta}(\mathbf{x})$

Loss func.: $\theta^* = \operatorname{argmin}_{\boldsymbol{\theta}} L_b(\boldsymbol{\theta}) + L_r(\boldsymbol{\theta}),$

where $L_b(\boldsymbol{\theta}) = \frac{1}{N_b} \sum_{j=1}^{N_b} \left(\widehat{u}_{\boldsymbol{\theta}}(\mathbf{x}_b^j) - g(\mathbf{x}_b^j) \right)^2$ Boundary $L_r(\boldsymbol{\theta}) = \frac{1}{N_c} \sum_{j=1}^{N_c} \left(\mathcal{F}[\widehat{u}_{\boldsymbol{\theta}}](\mathbf{x}_c^j) - f(\mathbf{x}_c^j) \right)^2$ Diff. terms

> Challenges: "Specturm bias" of DNN

- Easy to learn low-frequency info, but hard to learn <u>high-frequency</u> info [Rahaman et al. ICML 2019]
- DNN-based solvers hard to handle PDEs with <u>high-frequency</u> components

> GP-HM: model PDE solution in <u>frequency domain</u>

Assume solution's **power spectrum** is mixure of Student-t or Gaussian

$$S(s) = \sum_{q=1}^{Q} w_q \text{St}(s; \mu_q, \rho_q^2, \nu), \qquad S(s) = \sum_{q=1}^{Q} w_q \mathcal{N}(s; \mu_q, \rho_q^2)$$

Wiener-Khinchin theorem & Inverse Fourier transform (IFT)

GP kernels!
$$\begin{cases} k_{\text{StM}}(x,x') = \sum_{q=1}^{Q} w_q \gamma_{\nu,\rho_q}(x,x') \cos(2\pi \mu_q(x-x')), \\ k_{\text{GM}}(x,x') = \sum_{q=1}^{Q} w_q \exp\left(-\rho_q^2(x-x')^2\right) \cdot \cos(2\pi(x-x')\mu_q). \end{cases}$$

GP with Stm/GM kernel as frequency-aware surrogate model:

$$u(\cdot) \sim \mathcal{GP}(m(\cdot), cov(\cdot, \cdot)) \quad cov(\partial_{x_1x_2}u(\mathbf{x}), u(\mathbf{x}')) = \partial_{x_1x_2}k(\mathbf{x}, \mathbf{x}')$$

> Inference by maximizing log-joint prob

$$\mathcal{L}(\mathcal{U}, \Theta, \tau_1, \tau_2) = \log \mathcal{N}(\text{vec}(\mathcal{U})|\mathbf{0}, \mathbf{C}) + \lambda_b \cdot \log \mathcal{N}(\mathbf{g}|\mathbf{u}_b, \tau_1^{-1}\mathbf{I}) + \log \mathcal{N}(\mathbf{0}|\text{vec}(\mathcal{H}), \tau_2^{-1}\mathbf{I})$$

GP priors of the solution on grids

Likelihood of boundary conditions

Likelihood on the differential terms in domain

> Structured kernel for efficient computation

For grids with reso. $M_1 \times \ldots \times M_d$, there are $M = \prod M_d$ allocation points:

-Product kernel + Kronecker product structure of kernel matrix:

$$cov(f(\mathbf{x}), f(\mathbf{x}')) = \kappa(\mathbf{x}, \mathbf{x}'|\Theta) = \prod_{j=1}^{d} k_{StM}(x_j, x_j'|\boldsymbol{\theta}_q), \qquad \log |\mathbf{C}| = \sum_{j=1}^{d} \frac{M}{M_i} \log |\mathbf{C}_j|,$$

> Numerical Results:

Method	Poission-1D					Poission-2D		1D Allen-cahn		2D Allen-cahn	1D Advection
	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}
PINN	1.36e0	1.40e0	1.00e0	1.42e1	6.03e-1	1.63e0	9.99e-1	1.41e0	1.14e1	1.96e1	1.00e0
W-PINN	1.31e0	2.65e-1	1.86e0	2.60e1	6.94e-1	1.63e0	6.75e-1	1.34e0	1.45e1	2.03e1	1.01e0
RFF-PINN	4.97e-4	2.00e-5	7.29e-2	2.80e-1	5.74e-1	1.69e0	7.99 e-1	1.24e-3	2.46e-1	7.17e-1	9.96e-1
Rowdy	1.70e0	1.00e0	1.00e0	1.01e0	1.03e0	2.24e1	7.36e-1	1.30e0	1.31e0	1.18e0	1.03e0
Spectral method	2.36e-2	3.47e0	1.02e0	1.02e0	9.98e-1	1.58e-2	1.04e0	2.34e-2	2.45e1	2.45e1	2.67e0
Chebfun	3.05e-11	1.17e-11	5.81e-11	1.14e-10	8.95e-10	N/A	N/A	1.39e-08	2.94e-10	N/A	1.39e0
Finite Difference	5.58e-1	4.78e-2	2.34e-1	1.47e0	1.40e0	2.33e-1	1.75e-2	2.32e-01	2.36e-1	3.23e0	1.29e-1
GP-SE	2.70e-2	9.99e-1	9.99e-1	3.19e-1	9.75e-1	9.99e-1	9.53e-1	2.74e-2	1.06e-2	3.48e-1	9.99e-1
GP-Matérn	3.32e-2	9.8e-1	5.15e-1	1.83e-2	6.27e-1	6.28e-1	3.54e-2	3.32e-2	5.16e-2	2.96e-1	9.99e-1
GP-HM-GM	3.99e-7	2.73e-3	3.92e-6	1.55e-6	1.82e-3	6.46e-5	1.06e-3	4.91e-6	4.24e-6	5.78e-3	3.59e-3
GP-HM-StM	6.53e-7	2.71e-3	3.17e-6	8.97e-7	4.22e-4	6.87e-5	1.02e-3	7.71e-6	4.76e-6	2.99e-3	9.08e-4

Relative L_2 error. $u_1 = \sin(100x)$, $u_2 = \sin(x) + 0.1\sin(20x) + 0.05\cos(100x)$, $u_3 = \sin(6x)\cos(100x)$, $u_4 = x\sin(200x)$, $u_5 = \sin(500x) - 2(x - 0.5)^2$, $u_6 = \sin(100x)\sin(100y)$, $u_7 = \sin(6x)\sin(20x) + \sin(6y)\sin(20y)$, $u_8 = \sin(100x)$, $u_9 = \sin(6x)\cos(100x)$, $u_{10} = (\sin(x) + 0.1\sin(20x) + \cos(100x)) + \cos(100x)$, $u_{11} = \sin(x - 200t)$.

Figure 2: Prediction for the 1D Poisson equation with solution $\sin(500x) - 2(x - 0.5)^2$.

Figure 3: Point-wise solution error for 2D Allen-cahn equation, and the solution is $(\sin(x) + 0.1\sin(20x) + \cos(100x))(\sin(y) + 0.1\sin(20y) + \cos(100y))$.

> Learned Frequency:

