

Decomposing Temporal High-Order Interactions via Latent ODEs

School of Computing, Scientific Computing and Imaging Institute; University of Utah

bstract く

High-order interactions between multiple objects are common in real-world applications. Although tensor decomposition is a popular framework for high-order interaction analysis and prediction, most methods cannot well exploit the valuable timestamp information in data. The existent methods either discard the timestamps or convert them into discrete steps or use over-simplistic decomposition models. As a result, these methods might not be capable enough of capturing complex, fine-grained temporal dynamics or making accurate predictions for long-term interaction results. To overcome these limitations, we propose a novel Temporal High-order Interaction decomposition model based on Ordinary Differential Equations (THIS-ODE). We model the time-varying interaction result with a latent ODE. To capture the complex temporal dynamics, we use a neural network (NN) to learn the time derivative of the ODE state. We use the representation of the interaction objects to model the initial value of the ODE and to constitute a part of the NN input to compute the state. In this way, the temporal relationships of the participant objects can be estimated and encoded into their representations. For tractable and scalable inference, we use forward sensitivity analysis to efficiently compute the gradient of ODE state, based on which we use integral transform to develop a stochastic mini-batch learning algorithm. We demonstrate the advantage of our approach in simulation and four real-world applications.

Shibo Li, Robert Mike Kirby, Shandian Zhe

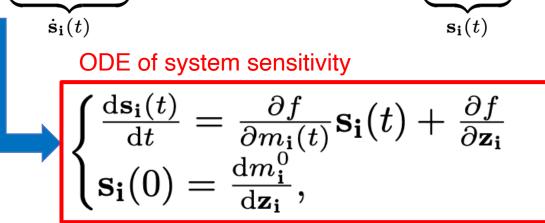
{shibo, kirby, zhe}@cs.utah.edu


Take time

• Depends on current state solution only

 $\partial \mathbf{z_i}$

 $\partial m_{\mathbf{i}}(t)$



Now to derive the dynamics of the sensitivity d $\partial m_{\mathbf{i}}(t)$ $\partial \, \mathrm{d}m_{\mathbf{i}}(t)$

 $\mathrm{d}t \quad \partial \mathbf{z_i}$

derivative again on sensitivity

 $\mathrm{d}t$

uiu, seive		Name	Description	Size	NNZ	Granularity in Time	
		Beijing Air Quality	time x locations x pollutants	s 35064 x 12 x 6	2454305	hourly	
		Indoor Condition	time x locations x sensor	19735 x 9 x 2	241201	every 10 minutes	
Interpolation	Beijing Air	Indoor Condition	Extrapolati	ion			
CP-Time	0.897 ± 0.012	0.780 ± 0.012	CP-Time	0.863	± 0.022	0.867 ± 0.010)
CP-DTL	0.898 ± 0.015	0.842 ± 0.003	CP-DTL	0.553	± 0.005	0.527 ± 0.006	5
CP-DTN	0.833 ± 0.003	0.889 ± 0.005	CP-DTN	0.557	± 0.004	0.584 ± 0.009)
GPTF-Time	0.711 ± 0.011	0.849 ± 0.005	GPTF-Tim	e 0.527	± 0.018	0.489 ± 0.011	
GPTF-DTL	0.686 ± 0.045	0.852 ± 0.004	GPTF-DTI	L 0.577	± 0.035	0.506 ± 0.013	
GPTF-DTN	0.670 ± 0.062	0.713 ± 0.104	GPTF-DTI	N 0.511	± 0.002	0.489 ± 0.003	
NTF-Time	0.745 ± 0.095	0.800 ± 0.009	NTF-Time	0.537	± 0.002	0.510 ± 0.027	· •
NTF-DTL	0.757 ± 0.006	0.777 ± 0.018	NTF-DTL	0.512	± 0.009	0.593 ± 0.079)
NTF-DTN	0.686 ± 0.011	0.665 ± 0.004	NTF-DTN	0.513	± 0.003	0.484 ± 0.011	
PTucker	0.959 ± 0.015	0.806 ± 0.027	PTucker	0.522	± 0.022	0.749 ± 0.006	
THIS-ODE	0.624 ± 0.008	0.618 ± 0.007	THIS-ODI	E 0.498	± 0.013	0.460 ± 0.004	4
ethod							