Abstract

UNIVERSITY
OF UTAH

School of Computing, Scientific Computing and Imaging Institute; University of Utah

THE Decomposing Temporal High-Order Interactions via Latent ODEs

Shibo Li, Robert Mike Kirby, Shandian Zhe

{shibo, kirby, zhe}@cs.utah.edu

High-order interactions between multiple objects are common in real-world applications. Although tensor decomposition is a popular framework for high-order
interaction analysis and prediction, most methods cannot well exploit the valuable timestamp information in data. The existent methods either discard the
timestamps or convert them into discrete steps or use over-simplistic decomposition models. As a result, these methods might not be capable enough of
capturing complex, fine-grained temporal dynamics or making accurate predictions for long-term interaction results. To overcome these limitations, we
propose a novel Temporal High-order Interaction decomposition model based on Ordinary Differential Equations (THIS-ODE). We model the time-varying
interaction result with a latent ODE. To capture the complex temporal dynamics, we use a neural network (NN) to learn the time derivative of the ODE state.
We use the representation of the interaction objects to model the initial value of the ODE and to constitute a part of the NN input to compute the state. In this

way, the temporal relationships of the participant objects can be estimated and encoded into their representations.

For tractable and scalable inference, we

use forward sensitivity analysis to efficiently compute the gradient of ODE state, based on which we use integral transform to develop a stochastic mini-batch
learning algorithm. We demonstrate the advantage of our approach in simulation and four real-world applications.

Introduction

High-order interactions in real-world:
« Customers purchase items at different grocery stores
« People take outdoor exercises at various places
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Creating Effective Online Advertising
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(user, advertisement, page-section)

(user, user, location, #hashtag)

(user, movie, episode)

Conventional Tensor Decomposition:
* Internal structure

« Compact representation

 Infer the missing values
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CANDECOMP/PARAFAC (CP), Harshman, 1970

Temporal Interactions : Z(t)

 Interactions are functions of time (complex temporal dynamics)

« Current methods: Discretize the timestamps or simply ignore temporal
information for interactions
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Our Contribution:

THIS-ODE: A novel decomposing model of temporal high-order
Interactions.

Leverage continuous timestamps, capture all kinds of complex temporal
dynamics within interactions.

Tractable inference with forward sensitivity analysis and time
alignment/integral transform tricks.
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Joint Initial Conditions Joint Dynamics Joint Solutions

Given by ODE solvers
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Now to derive the dynamics of the sensitivity

Take time d Om;(t) _ 0 dmy(t) _ Of Oma(t) +8f
derivative again dt 0z Oz dt Om;(t) 0z; Oz
. — ~——
on sensitivity 5:(t) si(t)
ODE of system sensitivity

ds,(t) of
dt — 9Imi(t) Si (t) 0z;

dmo
Si(O) — dzi ?
 Depends on current state solution only h;(t) = [mi(t); si(¢)]

* Jointly solved with the system state with and forward pass only one
ODE solver

Time alignment for efficient stochastic mini-batch optimization
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Temporal interaction as parametric ODE
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Joint probability given observations D = {(iy,t1,v1),..., (in,tn,yn)}
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Auto-differentiation or explicit gradients?

Computational graph constructed by ODE solvers
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Efficient computation of gradients with Forward Sensitivity
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Sensitivities of the system
Easy to compute
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Experiment
Ablation Study: Spiral Interactions T —— -
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a) Recovered Spiral in the interpolation experiment. Radius: m t); Angle: m t).
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!

Origi

>
)
o
Q
-+
]

-
w
o

Learned Representatio

P TP
1
>
=
=]
=]

-0.6 0.6 -0.6 0.6 -0.6 0.6 4 .

o

(c) Recovered Spiral in the extrapolation experiment. Radius: m, 5 2)(t); Angle: my 2)(t).
(d) Structures in extrapolation.

Ablation Study: Splral Interactions: Beijing Air, Indoor Condition, Fit

Record Server Room Name Descri iption Size NNZ Granularity in Time

Beijing Air Quality time x locations x pollutants 35064 x12x6 2454305 hourly

Indoor Condition time x locations x sensor 19735X9X 2 241201 every 10 minutes
Interpolation Beijing Air Indoor Condition Extrapolation
CP-Time 0.897 4+ 0.012 0.780 £+ 0.012 CP-Time 0.863 &+ 0.022 0.867 £+ 0.010
CP-DTL 0.898 + 0.015 0.842 4+ 0.003 CP-DTL 0.553 4+ 0.005 0.527 £+ 0.006
CP-DTN 0.833 + 0.003 0.889 + 0.005 CP-DTN 0.557 &+ 0.004 0.584 4+ 0.009
GPTF-Time 0.711 = 0.011 0.849 + 0.005 GPTF-Time 0.527 + 0.018 0.489 + 0.011
GPTF-DTL 0.686 &+ 0.045 0.852 + 0.004 GPTF-DTL 0.577 + 0.035 0.506 £+ 0.013
GPTF-DTN 0.670 £ 0.062 0.713+0.104 . . . GPTF-DTN 0.511 4+ 0.002 0.489 +£0.003 , , ,
NTF-Time 0.745 + 0.095 0.800 + 0.009 NTF-Time 0.537 4+ 0.002 0.510 £+ 0.027
NTE-DTL 0.757 £+ 0.006 0.777 £ 0.018 NTF-DTL 0.512 £+ 0.009 0.593 £+ 0.079
NTEF-DTN 0.686 + 0.011 0.665 + 0.004 NTE-DTN 0.513 4+ 0.003 0.484 + 0.011

PTucker 0.522 + 0.022 0.749 + 0.006

THIS-ODE 0.624 +0.008 0.618 + 0.007 THIS-ODE 0.498 + 0.013 0.460 + 0.004

Our method



