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Abstract: Multi-fidelity learning is popular in computational physics. While the fidelity is often up to the choice of mesh spacing and hence is 
continuous in nature, most methods only model finite, discrete fidelities. The recent work (Li et al., 2022a) proposes  the first continuous-fidelity 
surrogate model, named infinite-fidelity coregionalization (IFC),  which uses a neural Ordinary Differential Equation (ODE) to capture the rich 
information within the infinite, continuous fidelity space. While showing state-of-the-art predictive performance, IFC is computationally expensive 
in training and is difficult for uncertainty quantification. To overcome these limitations, we propose Infinite-Fidelity High-Order Gaussian Process 
(IF-HOGP), based on the recent GP high-dimensional output regression model HOGP. By tensorizing the output and using a product kernel at 
each mode, HOGP can highly efficiently estimate the mapping from the PDE parameters to the high-dimensional solution output, without the 
need for any low-rank approximation.  We made a simple extension by injecting the continuous fidelity variable into the input and applying a 
neural network transformation before feeding the input into the kernel. On three benchmark PDEs, IF-HOGP achieves prediction accuracy better 
than or close to IFC yet gains 380x speed-up and 7/8 memory reduction. Meanwhile, uncertainty calibration for IF-HOGP is straightforward.

 

Physical Simulations by Solving PDEs:
• Daily phenomena are dominated by fundamental physical laws  
• Fundamental physical laws are written as Partial differential equations 

(PDEs) systems
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Key challenges of scientific computing:
• Identify the governing model for complex systems 
• Efficiently solving large-scale non-linear systems of equations

Numerical Solvers:
• (Exact) accurate yet solutions
• Slow
• Do not generalize over the same domain
Data-drive Solvers(Surrogate Learning, Operator Learning):
• Fast inference with new PDE
• Generalize over domain problems
• Prepare large amount of data from numerical solvers
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Figure 1. Conventional PDEs solvers Figure 2. Data-driven PDEs solvers
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Multi-fidelity Modeling:
• Conventional solvers usually have multi-fidelity evaluations natively
• High-fidelity solutions: expensive but accurate
• Low-fidelity solutions: cheap but inaccurate
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Our Contribution:
• IF-HoGP: A scalable multi-fidelity modeling for very high-dimensional 

outputs
• Flexibly handles infinity/continuous fidelities while captures all fidelities’ 

nonlinear, non-stationary correlations.
• Predicts on unseen fidelities.
• Uncertainty quantification on PDE solutions.
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Multi-Fidelity Modeling ?

Capture Complex Fidelities 
Correlations?

Models all fidelities?

Predict on unseen fidelities?

Extrapolate to higher than target 
fidelities?

UQ on Solutions?

Efficiency and Scalability?
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A parametric ODE model for latent outputs
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Product kernel to model the 
multi-fidelity outputs

PDE parameter

Fidelity

Learnable joint embeddings of 
fidelity and PDE parameters

Coordinate features 
of PDE solutions

Optimal parameters can be acquired by maximizing marginal likelihood

Can be efficiently computed by exploring the Kronecker structure

Experiments
Evaluation 1: Predictive performance
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Evaluation 2: Visualize error fields

Evaluation 3: Efficiency in terms of computation reduction compared with IFC

Our method

Training Time: 380x Memory: 8x


