
Introduction

High Dimensional Output Regression: to learn a 
regression function given training data,

• Each    I.  is a      dimensional vector
• could be very large, e.g., 103 to 106

Ab
st
ra
ct Gaussian process regression networks (GPRN) are powerful Bayesian models for multi-output regression, but their 

inference is intractable. To address this issue, existing methods use a fully factorized structure (or a mixture of such 
structures) over all the outputs and latent functions for posterior approximation, which, however, can miss the strong 
posterior dependencies among the latent variables and hurt the inference quality. In addition, the updates of the variational
parameters are inefficient and can be prohibitively expensive for a large number of outputs. To overcome these limitations, 
we propose a scalable variational inference algorithm for GPRN, which not only captures the abundant posterior 
dependencies but also is much more efficient for massive outputs. We tensorize the output space and introduce 
tensor/matrix-normal variational posteriors to capture the posterior correlations and to reduce the parameters. We jointly 
optimize all the parameters and exploit the inherent Kronecker product structure in the variational model evidence lower 
bound to accelerate the computation. We demonstrate the advantages of our method in several real-world applications.
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Gaussian Process Regression Network (Wilson et 
al. 2012) :

• Nonstationary, highly flexible
• Analogy of the neural network output layer
• Both latent inputs and weights are GPs

(Wilson et al. 2012)

Contributions
Issue of Current Inference Approaches for GPRN:
• Markov Chain Monte Carlo (Wilson et al. 2012)

• Fully Factorized Variational Inference (Wilson et al. 
2012)

• Nonparametric Variational Inference (Nguyen et al. 
2013)

Pros: Asymptotically converge to the true posterior.
Cons: Inefficient and hard to diagnose the 
convergence with high dimensional output space

over-simplified posterior correlation

ignores posterior correlation

Our Method: Structure Variational Inference
• Matrix Gaussian posterior: fully capture the 

posterior dependency of the latent functions

• Tensor Normal posterior: fully capture the posterior 
dependency of all the weights

• Then the variational posterior is given by

Our Method (continued):
• Learning: Stochastic Variational Inference + Re-

parameterization tricks

• Linear Complexity:                 when 
Time Complexity

Fully Factorized VI

Non-parametric VI

Our approach

Experiments
Toy problems and time analysis:

Intermediate and Large-scale problems:
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(Example of Cantilever, D=3200)
(Example of Pressure t=1,5,10. D=1M)
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(per-iter time of Jura) (per-iter time of PM2.5)

(Comparisons of nRmse on intermediate and large-scale problems)


