Contact Information	50 Central Campus Drive, 3910 Kahlert School of Computing The University of Utah Salt Lake City, UT, 84112	Phone: (206)595-8415 E-mail: shibo@cs.utah.edu Homepage: https://imshibo.com	
Research Interests	Probabilistic Learning : Bayesian Modeling, Approximate Inference, Uncertainty Quantified of Deep Models		
	AI for Science : Surrogate Modeling, Operator Learning, Physical-Informed Machine Learning		
	Multi-Objective Learning: Multi-Task Learning, Multi-Fidelity Learning, Transfer Learning, Meta Learning		
	Interactive Machine Learning: Bayesian Optimization, Active Learning, Multi-armed Bandits, Reinforcement Learning		
Education	The University of Utah, Salt La	ake City, Utah	
	Ph.D. Student, Computer Science (expected graduation date: May 2024)		
	 Dissertation Topic: "Multi-Fidelity Learning and Optimization for Physical Simulation" Advisor: Shandian Zhe 		
	University of Pittsburgh, Pittsburgh, Pennsylvania		
	M.S., Mechanical Engineering, Dec, 2013		
	South China University of Technology, Guangzhou, Guangdong, China		
	B.E., Mechatronics and Robotic	s, Jun, 2012	
Publications	Li, S., Yu, X., Xing, W., Kirby Learning of Fourier Neural Operat and Statistics (AISTATS 2024). (M., Narayan, A., & Zhe, S. (2024). Multi-Resolution Active ors, The 27th International Conference on Artificial Intelligence Oral presentation)	
	Fang, S., Yu, X., Wang, Z., <u>Li, S.</u> composition for Continuous-indexer <i>Representations</i> (<i>ICLR 2024</i>).	, Kirby, M., & Zhe, S. (2024). Functional Bayesian Tucker Ded Tensor Data, In Twelfth International Conference on Learning	
	Fang, S., Cooley, M., Long, D., 1 and Multi-Scale PDEs with Gauss <i>Representations</i> $(ICLR \ 2024)$.	Li, S., Kirby, M., & Zhe, S. (2024). Solving High Frequency ian Processes, In Twelfth International Conference on Learning	
	Wang, Z.*, Fang, S.*, Li, S., & Diffusion-Reaction Processes, Adva . (Spotlight,Top 10%)	Zhe, S. (2023). Dynamic Tensor Decomposition via Neural ances in Neural Information Processing Systems (NeurIPS 2023)	
	Fang, S., Yu, X., Li, S. , Wang, Learning for Temporal Tensor Dece <u>(NeurIPS 2023)</u> . (Acceptance rate	Z., Kirby R., & Zhe, S. (2023). Streaming Factor Trajectory omposition, Advances in Neural Information Processing Systems : 26.1%)	
	Li, S.*, Penwarden, M.*, Kirby, R. for Multi-Domain Physics-Informe	M., & Zhe, S. (2023 Jun). Meta Learning of Interface Conditions ad Neural Networks. In International Conference on Machine	

Learning (ICML 2023) (to appear). PMLR. (Acceptance rate: 27.9%)

Li, S., Wang, Z., Narayan, A., Kirby, R., & Zhe, S. (2023, April). Meta-Learning with Adjoint Methods. In International Conference on Artificial Intelligence and Statistics (AISTATS 2023) (pp. 7239-7251). PMLR. (Acceptance rate: 29%)

Li, S., Wang, Z., Kirby, R., & Zhe, S. (2022). Infinite-Fidelity Coregionalization for Physical Simulation. Advances in Neural Information Processing Systems (NeurIPS 2022), 35, 25965-25978. (Acceptance rate: 25.6%)

Li, S.*, Phillips, J. M.*, Yu, X., Kirby, R., & Zhe, S. (2022). Batch Multi-Fidelity Active Learning with Budget Constraints. Advances in Neural Information Processing Systems (NeurIPS 2022), 35, 995-1007. (Acceptance rate: 25.6%)

Li, S., Kirby, R., & Zhe, S. (2022, June). Decomposing Temporal High-Order Interactions via Latent ODEs. In International Conference on Machine Learning (ICML 2022) (pp. 12797-12812). PMLR. (Acceptance rate: 21.9%)

Wang, Z., Xu, Y., Tillinghast, C., Li, S., Narayan, A., & Zhe, S. (2022, June). Nonparametric Embeddings of Sparse High-Order Interaction Events. In *International Conference on Machine Learning (ICML 2022)* (pp. 23237-23253). PMLR. (Acceptance rate: 21.9%)

Li, S., Wang, Z., Kirby, R. & amp; Zhe, S.. (2022). Deep Multi-Fidelity Active Learning of High-Dimensional Outputs . Proceedings of The 25th International Conference on Artificial Intelligence and Statistics (AISTATS 2022), Available from https://proceedings.mlr.press/v151/li22b.html. (Acceptance rate: 29.2%)

Li, S., Kirby, R., & Zhe, S. (2021). Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks. Advances in Neural Information Processing Systems (NeurIPS 2021), 34, 25463-25475. (Acceptance rate: 26%)

Li, S., Xing, W., Kirby, R., & Zhe, S. (2020). Multi-fidelity Bayesian optimization via deep neural networks. Advances in Neural Information Processing Systems (NeurIPS 2020), 33, 8521-8531. (Acceptance rate: 20.1%)

Li, S., Xing, W., Kirby, M., & Zhe, S. (2020). Scalable variational gaussian process regression networks. Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI 2020) Main track. Pages 2456-2462. https://doi.org/10.24963/ijcai.2020/340 (Acceptance rate: 12.6%)

Yang, T., Fang, S., Li, S., Wang, Y., & Ai, Q. (2020, October). Analysis of multivariate scoring functions for automatic unbiased learning to rank. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM 2020) (pp. 2277-2280). (Acceptance rate: 21.7%)

Workshop	Li, S., Shi, L., & Zhe, S. (2023, July) Infinite-Fidelity Surrogate Learning via High-order Gaussian
PAPERS	Processes. 1st Synergy of Scientific and Machine Learning Modeling @ ICML 2023

PAPERS INShibo Li, Xin Yu, Wei Xing, Mike Kirby, Akil Narayan and Shandian Zhe. Multi-Resolution Active
Learning of Fourier Neural Operators.

Zheng Wang, <u>Shibo Li</u>, Shikai Fang, Shandian Zhe. *Diffusion-Generative Multi-Fidelity Learning* for Physical Simulation.

Shikai Fang, Xin Yu, Zheng Wang, <u>Shibo Li</u>, Mike Kirby, Shandian Zhe. Functional Bayesian Tucker Decomposition for Continuous-indexed Tensor Data.

Shikai Fang, Madison Cooley, Da Long, Shibo Li, Mike Kirby, Shandian Zhee. Solving High Frequency and Multi-Scale PDEs with Gaussian Processes.

Program Committee

Academic Services

SERVICES	AISTATS 2024 UAI 2023 AISTATS 2023 UAI 2022 AISTATS 2022 ICMLA 2022	
	Conference Reviewer ICML 2024 ICLR 2024 NeurIPS 2023 ICML 2023 Workshop SPIGM NeurIPS 2022 NeurIPS 2022 MetaLearn Workshop ICML 2022 AISTATS 2021 ICMLA 2021 UAI 2021 AAAI 2020	
	Journal Reviewer Journal of Computational Physics Scientific Reports	
Teaching	 The University of Utah Teaching Mentorships CS 6350 (Fall 2021): Machine Learning CS 6350 (Spring 2021): Machine Learning 	
	 The University of Georgia Teaching Assistant, Lab Instructor CSCI 1101 (Fall 2017): Introduction to Programming I CSCI 1101 (Spring 2017): Introduction to Programming II CSCI 8902 (Fall 2016): Decision Making under Uncertainties CSCI 1301(Fall 2015): System Programming 	
Appointments	Amazon, Inc. , Seattle, WA <i>Applied Scientist Intern</i> In-context few-shots learning with large language/multi-modality m	May, 2022 - August, 2022 nodels.
	Amazon, Inc. , Seattle, WA <i>Applied Scientist Intern</i> Privacy-preserved learning algorithms.	May, 2021 - August, 2021
	Schlumberger-Doll Research, Cambridge, MA Robotics Research Intern	June, 2018 - October, 2018

Force-controlled planning algorithms.

Reference

Shandian Zhe (advisor)

Assistant Professor Kahlert School of Computing The University of Utah Salt Lake City, UT, 84112 *Email:* zhe@cs.utah.edu

Mike Kirby

Professor Kahlert School of Computing, Scientific Computing and Imaging Institute The University of Utah Salt Lake City, UT, 84112 *Email:* kirby@cs.utah.edu

Akil Narayan

Associate Professor Department of Mathematics, Scientific Computing and Imaging Institute The University of Utah Salt Lake City, UT, 84112 *Email:* akil@sci.utah.edu

Kang Li

Professor Chief Security Officer @ CertiK Franklin College of Arts and Sciences The University of Georgia Sunnyvale, CA, 94043 *Email:* kangli.ctf@gmail.com

Qing Ping

Senior Applied Scientist Amazon, Inc, Seattle, WA, 98109 *Email:* pingqing@amazon.com